scholarly journals Antibiofilm Activity of Synthetic Peptides Against Candida Albicans and C. Krusei: Action Mechanisms and Clinical Application to Overcome the Resistance Towards Antifungal Drugs Running Title: Antibiofilm Activity of Synthetic Peptides

Author(s):  
Leandro P. Bezerra ◽  
Ayrles F.B. Silva ◽  
Jackson L. Amaral ◽  
Nilton A.S. Neto ◽  
Rafael G. G. Silva ◽  
...  

Abstract Yeasts belonging to the Candida genus are important human pathogens. Candida biofilm is the most common resistance mechanism, which could increase in 1000 times the resistance to antifungal drugs. This study aimed to evaluate the antibiofilm activity of synthetic peptides, as well as action mechanisms and synergistic effect with Nystatin (NYS) and Itraconazole (ITR) by Scanning Electron Microscopy (SEM) and Fluorescence Microscopy (FM). ITR (1000 µg. mL− 1) inhibited 10% of biofilm formation of C. krusei and NYS (1000 µg. mL− 1) 40% of C. albicans. Regarding synergistic effect, peptides enhance 7-fold the action of ITR to inhibit the biofilm formation of C. krusei and C. albicans, as well as the degradation of formed biofilm of C. krusei. The action mechanism of peptides or in combination with antifungal drugs involved cell wall damage, membrane pore formation, loss of cytoplasmic content, and overproduction of reactive oxygen species (ROS). Docking analysis revealed ionic and hydrophobic interactions between peptides and both drugs, which may explain the synergistic effect. Altogether, our results suggest the high potential of synthetic peptides be employed as adjuvants enhancing the activity of antifungal drugs to overcome the resistance provided by fungal biofilm and decrease the toxicity of drugs.

Author(s):  
Lisa Kirchhoff ◽  
Silke Dittmer ◽  
Ann-Kathrin Weisner ◽  
Jan Buer ◽  
Peter-Michael Rath ◽  
...  

Abstract Objectives Patients with immunodeficiency or cystic fibrosis frequently suffer from respiratory fungal infections. In particular, biofilm-associated fungi cause refractory infection manifestations, linked to increased resistance to anti-infective agents. One emerging filamentous fungus is Lomentospora prolificans. Here, the biofilm-formation capabilities of L. prolificans isolates were investigated and the susceptibility of biofilms to various antifungal agents was analysed. Methods Biofilm formation of L. prolificans (n = 11) was estimated by crystal violet stain and antibiofilm activity was additionally determined via detection of metabolically active biofilm using an XTT assay. Amphotericin B, micafungin, voriconazole and olorofim were compared with regard to their antibiofilm effects when added prior to adhesion, after adhesion and on mature and preformed fungal biofilms. Imaging via confocal laser scanning microscopy was carried out to demonstrate the effect of drug treatment on the fungal biofilm. Results Antibiofilm activities of the tested antifungal agents were shown to be most effective on adherent cells whilst mature biofilm was the most resistant. The most promising antibiofilm effects were detected with voriconazole and olorofim. Olorofim showed an average minimum biofilm eradication concentration (MBEC) of 0.06 mg/L, when added prior to and after adhesion. The MBECs of voriconazole were ≤4 mg/L. On mature biofilm the MBECs of olorofim and voriconazole were higher than the previously determined MICs against planktonic cultures. In contrast, amphotericin B and especially micafungin did not exhibit sufficient antibiofilm activity against L. prolificans. Conclusions To our knowledge, this is the first study demonstrating the antibiofilm potential of olorofim against the human pathogenic fungus L. prolificans.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Adriana A. Almeida-Apolonio ◽  
Wellinton J. Cupozak-Pinheiro ◽  
Vagner M. Berres ◽  
Fabiana G. S. Dantas ◽  
Terezinha I. E. Svidzinski ◽  
...  

Cryptococcus gattiiis an etiologic agent of cryptococcosis and a serious disease that affects immunocompromised and immunocompetent patients worldwide. The therapeutic arsenal used to treat cryptococcosis is limited to a few antifungal agents, and the ability ofC. gattiito form biofilms may hinder treatment and decrease its susceptibility to antifungal agents. The objective of this study was to evaluate the antifungal and antibiofilm activities of an ethanolic extract ofCochlospermum regium(Schrank) Pilger leaves againstC. gattii. The antifungal activity was assessed by measuring the minimum inhibitory concentration (MIC) using the broth microdilution technique and interaction of the extract with fluconazole was performed of checkerboard assay. The antibiofilm activity of the extract was evaluated in 96-well polystyrene microplates, and the biofilms were quantified by counting colony forming units. The extract showed antifungal activity at concentrations of 62.5 to 250μg/mL and when the extract was evaluated in combination with fluconazole,C. gattiiwas inhibited at sub-MIC levels. The antibiofilm activity of the extract againstC. gattiiwas observed both during biofilm formation and on an already established biofilm. The results showed that the ethanolic extract of the leaves ofC. regiumshows promise for the development of antifungal drugs to treat cryptococcosis and to combatC. gattiibiofilms.


Author(s):  
Hung-Jen Tang ◽  
Yi-Tsung Lin ◽  
Chi-Chung Chen ◽  
Chih-Wei Chen ◽  
Ying-Chen Lu ◽  
...  

Abstract Objectives To investigate the in vitro activity of antibiotics against clinical Elizabethkingia anophelis isolates and to find a suitable antibiotic combination with synergistic effects to combat antibiotic-resistant E. anophelis and its associated biofilm. Methods E. anophelis isolates were identified by 16S rRNA sequencing; 30 strains with different pulsotypes were identified and the MIC, antibiotic resistance mechanism, antibiotic combination activity and killing effects of antimicrobial agents on biofilms of these strains were determined. Results All E. anophelis isolates were susceptible to minocycline and cefoperazone/sulbactam (1:1). More than 90% of clinical isolates were susceptible to cefoperazone/sulbactam (1:0.5), piperacillin/tazobactam and rifampicin. Some novel mutations, such as gyrA G81D, parE D585N and parC P134T, that have never been reported before, were identified. The synergistic effect was most prominent for the combination of minocycline and rifampicin, with 93.3% of their FIC index values ≤0.5, and no antagonism was observed using the chequerboard method. This synergistic effect between minocycline and rifampicin was also observed using time–killing methods for clinical E. anophelis isolates at both normal inoculum and high inoculum. Twenty-nine isolates tested positive for biofilm formation. Minocycline remained active against biofilm-embedded and biofilm-released planktonic E. anophelis cells; however, the enhanced effect of minocycline by adding rifampicin was only observed at 24 h (not at 72 and 120 h). Conclusions Although E. anophelis was resistant to many antibiotics and could exhibit biofilm formation, minocycline showed potent in vitro activity against this pathogen and its associated biofilm.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Christian Ramsès Tokam Kuaté ◽  
Borel Bisso Ndezo ◽  
Jean Paul Dzoyem

Biofilms related to human infection have high levels of pathogenicity due to their resistance to antimicrobial agents. The discovery of antibiofilm agents is necessary. One approach to overcome this problem is the use of antibiotics agents’ combination. This study aimed to determine the efficacy of the combination of natural products thymol and piperine with three aminoglycosides antibiotics, amikacin, kanamycin, and streptomycin against biofilm-forming Salmonella enterica. The microtiter plate assay method was used to evaluate the biofilm-producing capacity of the isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined by the broth microdilution method. The inhibition of biofilm formation and biofilm eradication was determined using the microtiter broth method. The checkerboard method was used to determine the combined effects of natural products with aminoglycosides antibiotics. All the tested isolates showed various levels of biofilm formation. Overall, combinations provided 43.3% of synergy in preventing the biofilm formation and 40% of synergy in eradicating preformed biofilms, and in both cases, no antagonism was observed. The combination of thymol with kanamycin showed a synergistic effect with 16- to 32-fold decrease of the minimum biofilm eradication concentration (MBEC) of kanamycin. The interaction of piperine with amikacin and streptomycin also revealed a synergistic effect with 16-fold reduction of the minimum biofilm inhibitory concentration (MBIC). The combination of thymol with the three antibiotics showed a strong synergistic effect in both inhibiting the biofilm formation and eradicating the preformed biofilm. This study demonstrates that thymol and piperine potentiate the antibiofilm activity of amikacin, kanamycin, and streptomycin. These combinations are a promising approach therapeutic to overcome the problem of Salmonella enterica biofilm-associated infections. In addition, these combinations could help reduce the concentration of individual components, thereby minimizing the nephrotoxicity of aminoglycosides antibiotics.


Author(s):  
Anna Čuvalová ◽  
Imrich Strapáč ◽  
Livia Handrová ◽  
Vladimir Kmeť

Mushrooms are a renowned source of products with an array of bioactivities, from antibacterial to antiviral, cytotoxic, antifeeding, antifungal or antioxidant and might be a valuable resource in the search of new bioactive extracts to inhibit biofilm production. We demonstrate the effect of five mushroom water extracts Macrolepiota procera, Pleurotus ostreatus, Auricularia auricula-judae, Armillaria mellea and Laetiporus sulphurous on biofilm formation of four Staphylococcus aureus strains isolated from ixodid ticks (Acari) and ewe´s milk. The PCR was used for detection of virulence genes (hla, isdA, B, bbp, sirB, fnbpA, sdrE, agr II). The ability of biofilm formation and anti-biofilm activity of mushrooms extracts was assessed in a quantitative crystal violet assay. The biofilm formation of S. aureus strains was significantly reduced by all mushrooms extracts (p < 0.001). We showed that more significant anti-biofilm effect of the extracts was of Staphylococcus aureus isolated from ixodid ticks in comparison to Staphylococcus aureus isolated from ewe´s milk. In the present study, A. mellea, P. ostreatus, L. sulphurous, A. auricula-judae and M. procera extracts inhibited biofilm formation by 70.87%, 67.00%, 64.14%, 62.77% and 47.71%, respectively. The results suggest that compounds in mushrooms extracts might be useful to control and handle detrimental infections caused by animal and human pathogens.


2020 ◽  
Vol 14 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Jang-Won Lee ◽  
Dung N.T. Pham ◽  
Mohammad M. Khan ◽  
Seul-Ki Park ◽  
...  

Background: The ability to form biofilm and produce several virulence factors has caused numerous human pathogens to become tremendously resistant towards traditional antibiotic treatments, thus, new alternative strategies are urgently in demand. One of the strategies that have recently been developed involves the application of metallic Nanoparticles (NPs). Up to the present, promising results in terms of antimicrobial and antibiofilm activities have been observed in a wide range of metal NPs. Methods: The present study has selected three metal oxides such as ZnO, SnO2 and CeO2 NPs to comparatively investigate their antibiofilm and antibacterial properties against two Gram-positive human pathogens, which are Listeria monocytogenes and Staphylococcus aureus. Result: The anti-biofilm activities of ZnO, SnO2 and CeO2 NPs against S. aureus and L. monocytogenes were assayed by crystal violet staining and confirmed by microscopic visualization using SEM. The synthesis of amyloid protein by S. aureus and exopolysaccharide by L. monocytogenes in the presence of ZnO, SnO2 and CeO2 NPs was evaluated by Congo red assay. Conclusion: Overall, these results indicated that ZnO, SnO2 and CeO2 NPs can be considered as potential agents for treating the infections caused by L. monocytogenes and S. aureus, especially those associated with biofilm formation. Based on the present study, further studies are required to understand their mechanisms at both phenotypic and molecular levels, as well as their in vivo cytotoxicity, thereby enabling the applications of these metal oxide NPs in biomedical fields and food industry. Discussion: Results have shown that ZnO, SnO2 and CeO2 NPs effectively inhibited biofilm formation of both L. monocytogenes and S. aureus. The microscopic analysis also confirmed the antibiofilm activity of these NPs. It was also found that only ZnO NPs inhibited cell growth as well as the production of amyloid protein in S. aureus.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olivia Nathalia ◽  
Diana Elizabeth Waturangi

Abstract Objective The objective of this research were to screen quorum quenching activity compound from phyllosphere bacteria as well as antibiofilm activity against several fish pathogen bacteria such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. Results We found eight phyllosphere bacteria isolates with potential quorum quenching activity to inhibit Chromobacterium violaceum as indicator bacteria. Crude extracts (20 mg/mL) showed various antibiofilm activity against fish pathogenic bacteria used in this study. Isolate JB 17B showed the highest activity to inhibit biofilm formation of A. hydrophila and V. harveyi, meanwhile isolate JB 3B showed the highest activity to inhibit biofilm of S. agalactiae. From destruction assay, isolate JB 8F showed the highest activity to disrupt biofilm of A. hydrophila isolate JB 20B showed the highest activity to disrupt biofilm of V. harveyi, isolate JB 17B also showed the highest activity to disrupt biofilm of S. agalactiae.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 655
Author(s):  
Anna Herman ◽  
Andrzej Przemysław Herman

Clinical isolates of Candida yeast are the most common cause of opportunistic fungal infections resistant to certain antifungal drugs. Therefore, it is necessary to detect more effective antifungal agents that would be successful in overcoming such infections. Among them are some herbal products and their active constituents.The purpose of this review is to summarize the current state of knowledge onherbal products and their active constituents havingantifungal activity against drug-resistant Candida sp. used alone and in combination with antifungal drugs.The possible mechanisms of their action on drug-resistant Candida sp. including (1) inhibition of budding yeast transformation into hyphae; (2) inhibition of biofilm formation; (3) inhibition of cell wall or cytoplasmic membrane biosynthesis; (4) ROS production; and (5) over-expression of membrane transporters will be also described.


Author(s):  
Gunderao Hanumantrao Kathwate ◽  
Ravikumar Bapurao Shinde ◽  
S. Mohan Karuppayil

Sign in / Sign up

Export Citation Format

Share Document