Recombinant TAT-Thymosin β-4 Promotes Angiogenesis by Activating VEGFR2 Signaling Pathway

Author(s):  
Chul Min Kim ◽  
Yun-Mi Jeong ◽  
Jae-Hun Kim ◽  
Guolong Jin ◽  
Hyeongkwon Oh ◽  
...  

Abstract Thymosin β-4 is a 43-amino acid intracellular polypeptide that was originally isolated from bovine thymus. Of the 16 known thymosin families, thymosin β-4 is the most common type found in all tissues. Thymosin β-4 regulates angiogenesis, cell differentiation, morphogenesis, migration, and organogenesis and is linked to a dynamic equilibrium between G-actin and F-actin. In particular, thymosin β-4 is well-known for its angiogenic and anti-apoptotic functions. In this study, we synthesized thymosin β-4 linked with the well-known cell-penetrating peptide TAT (YGRKKRRRQRRR). TAT-thymosin β-4 promotes angiogenesis and cell migration in vitro via the VEGFR2 signaling pathway and reduces apoptosis. To examine angiogenic potential in vivo, a Matrigel Plus assay was conducted that revealed the angiogenic effect of TAT-thymosin β-4. In conclusion, TAT-thymosin β-4 promotes blood vessels and is expected to be applicable in regenerative medicine for all organs requiring blood vessels.

2020 ◽  
Vol 256 ◽  
pp. 112664
Author(s):  
Hyun-Dong Cho ◽  
Kwan-Woo Lee ◽  
Yeong-Seon Won ◽  
Jeong-Ho Kim ◽  
Kwon-Il Seo

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2600
Author(s):  
Maria Teresa Palano ◽  
Domenica Giannandrea ◽  
Natalia Platonova ◽  
Germano Gaudenzi ◽  
Monica Falleni ◽  
...  

Multiple myeloma (MM) is an incurable plasma cell malignancy arising primarily within the bone marrow (BM). During MM progression, different modifications occur in the tumor cells and BM microenvironment, including the angiogenic shift characterized by the increased capability of endothelial cells to organize a network, migrate and express angiogenic factors, including vascular endothelial growth factor (VEGF). Here, we studied the functional outcome of the dysregulation of Notch ligands, Jagged1 and Jagged2, occurring during disease progression, on the angiogenic potential of MM cells and BM stromal cells (BMSCs). Jagged1–2 expression was modulated by RNA interference or soluble peptide administration, and the effects on the MM cell lines’ ability to induce human pulmonary artery cells (HPAECs) angiogenesis or to indirectly increase the BMSC angiogenic potential was analyzed in vitro; in vivo validation was performed on a zebrafish model and MM patients’ BM biopsies. Overall, our results indicate that the MM-derived Jagged ligands (1) increase the tumor cell angiogenic potential by directly triggering Notch activation in the HPAECs or stimulating the release of angiogenic factors, i.e., VEGF; and (2) stimulate the BMSCs to promote angiogenesis through VEGF secretion. The observed pro-angiogenic effect of Notch activation in the BM during MM progression provides further evidence of the potential of a therapy targeting the Jagged ligands.


2021 ◽  
Author(s):  
Lin Liu ◽  
Shukui Qin ◽  
Zhengcao Liu ◽  
Yinghui Zheng ◽  
Li Han ◽  
...  

Abstract Background We previously found that (via inhibition of the VEGF/VEGFR signaling pathway) ckgroundSevacizumab (Sev), an anti-VEGF monoclonal antibody, was proven to have a superior inhibitory effect than bevacizumab (Bev) on the growth of hepatocellular carcinoma (HCC) cells. This study aimed to explore the anti-proliferation and anti-angiogenic effects of Sev on HCC cells in combination with oxaliplatin (OXA) or 5-fluorouracil (5-Fu). Methods In vitro HCC/endothelial cell growth in different concentration drug was analyzed by MTT assay, DAPI and flow cytometry assay. Cell scratch test, transwell assay, tube formation assay, zebrafish assay, and CAM assay were used to investigate anti-angiogenesis effect of drugs. VEGF mRNA relative expression changes of zebrafish embryos were detected by RT-PCR.A fluorescence imaging system was applied to observe the growth of transplantation tumor and blood vessels in HCC mouse xenografts. Tissue H-E staining and TEM detection were used to detect the tumor cell apoptosis. MVD was detected by immunohistochemical analysis of CD31. ELISA and western-blots were used to detect the cell VEGF/VEGFR pathway and its downstream target activity both in vitro and in vivo. Results In vitro results showed that the combination of Sev with OXA/5-Fu can synergistically inhibit the proliferation of HCC and endothelial cells. Compared with the corresponding monotherapy group, combination therapy showed a stronger effect on inducing apoptosis and cell cycle arrest. In vivo findings revealed that Sev in combination with chemotherapy can synergistically inhibit tumor growth by inducing cell apoptosis in nude mice with HCC xenografts. In addition, the wound healing and transwell migration assays demonstrated that Sev can inhibit the migration of endothelial cell lines in combination with chemotherapy. In vitro tube formation test, zebrafish and chicken embryonic-angiogenic assay, immunohistochemistry, and in vivo fluorescence imaging consistently verified that Sev and OXA/5-Fu can synergistically inhibit the growth of blood vessels, and the underlying mechanism may be associated with inhibition of the VEGF/VEGFR signaling pathway. Conclusions The combination of Sev and chemotherapy is associated with the inhibition of HCC growth and tumor angiogenesis, which may provide a significant biological rationale for evaluating the efficacy of Sev and OXA/5-Fu combination therapy on HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyuhwan Na ◽  
Youngkyu Cho ◽  
Dong-Hee Choi ◽  
Myung-Jin Park ◽  
Ji-hun Yang ◽  
...  

AbstractDuring radiotherapy, microenvironments neighboring the tumor are also exposed to gamma irradiation; this results in unexpected side effects. Blood vessels can serve as microenvironments for tumors and they play an important role in providing nutrients to tumors. This is mostly related to tumor progression, metastasis, and relapse after therapy. Many studies have been performed to obtain a better understanding of tumor vasculature after radiotherapy with in vitro models. However, compared to 3-D models, 2-D in vitro endothelial monolayers cannot physiologically reflect in vivo blood vessels. We previously remodeled the extracellular matrix (ECM) hydrogel that enhanced the tight barrier formation of 3-D blood vessels and the vascular endothelial growth factor (VEGF) gradient induced angiogenesis in a microfluidic device. In this study, the blood vessel model is further introduced to understand how gamma irradiation affects the endothelial monolayer. After the gamma irradiation exposure, we observed a collapsed endothelial barrier and a reduced angiogenic potential. Changes in the cell behaviors of the tip and stalk cells were also detected in the angiogenesis model after irradiation, which is difficult to observe in 2-D monolayer models. Therefore, the 3-D in vitro blood vessel model can be used to understand radiation-induced endothelial injuries.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ben Liu ◽  
Meng Zhou ◽  
Xiangchun Li ◽  
Xining Zhang ◽  
Qinghua Wang ◽  
...  

AbstractThere is a male preponderance in gastric cancer (GC), which suggests a role of androgen and androgen receptor (AR). However, the mechanism of AR signaling in GC especially in female patients remains obscure. We sought to identify the AR signaling pathway that might be related to prognosis and examine the potential clinical utility of the AR antagonist for treatment. Deep learning and gene set enrichment analysis was used to identify potential critical factors associated with gender bias in GC (n = 1390). Gene expression profile analysis was performed to screen differentially expressed genes associated with AR expression in the Tianjin discovery set (n = 90) and TCGA validation set (n = 341). Predictors of survival were identified via lasso regression analyses and validated in the expanded Tianjin cohort (n = 373). In vitro and in vivo experiments were established to determine the drug effect. The GC gender bias was attributable to sex chromosome abnormalities and AR signaling dysregulation. The candidates for AR-related gene sets were screened, and AR combined with miR-125b was associated with poor prognosis, particularly among female patients. AR was confirmed to directly regulate miR-125b expression. AR-miR-125b signaling pathway inhibited apoptosis and promoted proliferation. AR antagonist, bicalutamide, exerted anti-tumor activities and induced apoptosis both in vitro and in vivo, using GC cell lines and female patient-derived xenograft (PDX) model. We have shed light on gender differences by revealing a hormone-regulated oncogenic signaling pathway in GC. Our preclinical studies suggest that AR is a potential therapeutic target for this deadly cancer type, especially in female patients.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Zhicheng Zheng ◽  
Peiyu Liang ◽  
Baohua Hou ◽  
Xin Lu ◽  
Qianwen Ma ◽  
...  

Abstract Background Accumulating evidence suggests that disease-associated microglia (DAM), a recently discovered subset of microglia, plays a protective role in neurological diseases. Targeting DAM phenotypic transformation may provide new therapeutic options. However, the relationship between DAM and epilepsy remains unknown. Methods Analysis of public RNA-sequencing data revealed predisposing factors (such as dipeptidyl peptidase IV; DPP4) for epilepsy related to DAM conversion. Anti-epileptic effect was assessed by electroencephalogram recordings and immunohistochemistry in a kainic acid (KA)-induced mouse model of epilepsy. The phenotype, morphology and function of microglia were assessed by qPCR, western blotting and microscopic imaging. Results Our results demonstrated that DPP4 participated in DAM conversion and epilepsy. The treatment of sitagliptin (a DPP4 inhibitor) attenuated KA-induced epilepsy and promoted the expression of DAM markers (Itgax and Axl) in both mouse epilepsy model in vivo and microglial inflammatory model in vitro. With sitagliptin treatment, microglial cells did not display an inflammatory activation state (enlarged cell bodies). Furthermore, these microglia exhibited complicated intersections, longer processes and wider coverage of parenchyma. In addition, sitagliptin reduced the activation of NF-κB signaling pathway and inhibited the expression of iNOS, IL-1β, IL-6 and the proinflammatory DAM subset gene CD44. Conclusion The present results highlight that the DPP4 inhibitor sitagliptin can attenuate epilepsy and promote DAM phenotypic transformation. These DAM exhibit unique morphological features, greater migration ability and better surveillance capability. The possible underlying mechanism is that sitagliptin can reduce the activation of NF-κB signaling pathway and suppress the inflammatory response mediated by microglia. Thus, we propose DPP4 may act as an attractive direction for DAM research and a potential therapeutic target for epilepsy.


Sign in / Sign up

Export Citation Format

Share Document