scholarly journals Bacteria are more sensitive to nitrogen fertilizer application in tea plantation soil while fungi are more correlated to tea yield and quality

Author(s):  
Sheng Tang ◽  
Jingjie Zhou ◽  
Wankun Pan ◽  
Rui Tang ◽  
Qingxu Ma ◽  
...  

Abstract Aims Soil in tea plantations is characterised by severe acidification and high aluminium and fluorine content. Applying excessive nitrogen (N) is a common strategy in tea plantations. Fungal and bacterial responses to N fertiliser addition in tea plantations, especially their relationship with tea growth, quality, and soil microbiome composition, remain unclear. Methods We performed a field experiment using different N fertiliser application rates for 5 years (2016‒2020) in a tea-producing region of China. Results Application of excessive N (600 kg ha− 1 y− 1) reduced tea yield and quality. High N application rates (360 and 600 kg ha− 1 y− 1) significantly decreased bacterial and fungal diversity and altered the compositions of bacterial and fungal communities (P < 0.05). Fungi were more tolerant than bacteria to soil environmental changes induced by N fertiliser application. Succession of bacterial and fungal communities was mostly driven by pH. Partial least square path modelling suggested that N addition directly influenced the diversity and communities of bacteria and fungi, and indirectly influenced bacterial community and fungal diversity by mediating soil nutrients and pH. The assembly of fungal communities was more regulated by dispersal limitation and deterministic processes than that of bacterial communities. High microbial diversity was not a requirement for tea growth. Conclusions Fungi had a greater impact on tea yield and quality than bacteria; therefore, more attention should be given to fungi, which play a stable role in nutrient cycling and organic matter decomposition in tea plantation, eventually favouring tea growth.

2021 ◽  
Author(s):  
peng yan ◽  
Chen Shen ◽  
Zhenhao Zou ◽  
Lichao Fan ◽  
Xin Li ◽  
...  

Abstract Purpose The effects of fertilization of tea plantations on soil quality and the diversity and composition of microbial communities have received increased attention in recent years. Despite their important role as decomposers of organic matter, the responses of soil fungi to fertilization and soil fertility, particularly in subsoils, remain unknown. In this study, the effects of land-use change and fertilization on fungal diversity and function in both of topsoil and subsoils were evaluated.Methods We sampled soil profiles (0–60 cm) from tea plantations in southeastern China with low, moderate, and high inputs of mineral and organic fertilizers, as well as a nearby natural (unfertilized) forest. 18s rRNA Illumina sequencing was used to evaluate how soil fertility and land-use impacted fungal diversity and function. Results Following conversion from forest to tea plantation, soil fungal diversity increased with fertility in topsoil but declined in subsoils, resulting in significant vertical variation in highly fertile soils. The dominant fungal groups shifted from Solicoccozyma and Trichoderma in the forest to Pseudogymnoascus and Umbelopsis in tea plantation soils. Relative abundance of Pseudogymnoascus increased with soil fertility, while Mortierella and opportunistic saprotrophs exhibited the opposite pattern. Fungal network complexity was enhanced in topsoil under increased soil fertility, but decreased in the subsoil, suggesting an increased selective effect along the soil horizon. Land-use changes have altered the dominant fungal groups, particularly in topsoil. Soil fertility not only regulated fungal diversity but also shifted community composition toward that found in the forest. With increased soil fertility, plants have a greater influence on the soil fungal community.


2021 ◽  
Vol 9 (6) ◽  
pp. 1273
Author(s):  
Nazareth Torres ◽  
Runze Yu ◽  
S. Kaan Kurtural

Vineyard-living microbiota affect grapevine health and adaptation to changing environments and determine the biological quality of soils that strongly influence wine quality. However, their abundance and interactions may be affected by vineyard management. The present study was conducted to assess whether the vineyard soil microbiome was altered by the use of biostimulants (arbuscular mycorrhizal fungi (AMF) inoculation vs. non-inoculated) and/or irrigation management (fully irrigated vs. half irrigated). Bacterial and fungal communities in vineyard soils were shaped by both time course and soil management (i.e., the use of biostimulants and irrigation). Regarding alpha diversity, fungal communities were more responsive to treatments, whereas changes in beta diversity were mainly recorded in the bacterial communities. Edaphic factors rarely influence bacterial and fungal communities. Microbial network analyses suggested that the bacterial associations were weaker than the fungal ones under half irrigation and that the inoculation with AMF led to the increase in positive associations between vineyard-soil-living microbes. Altogether, the results highlight the need for more studies on the effect of management practices, especially the addition of AMF on cropping systems, to fully understand the factors that drive their variability, strengthen beneficial microbial networks, and achieve better soil quality, which will improve crop performance.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Iván Franco-Manchón ◽  
Kauko Salo ◽  
Juan Oria-de-Rueda ◽  
José Bonet ◽  
Pablo Martín-Pinto

Natural forests and plantations of Pinus are ecologically and economically important worldwide, producing an array of goods and services, including the provision of non-wood forest products. Pinus species play an important role in Mediterranean and boreal forests. Although Pinus species seem to show an ecological adaptation to recurrent wildfires, a new era of mega fires is predicted, owing to climate changes associated with global warming. As a consequence, fungal communities, which are key players in forest ecosystems, could be strongly affected by these wildfires. The aim of this study was to observe the fungal community dynamics, and particularly the edible fungi, in maritime (Pinus pinaster Ait.), austrian pine (Pinus nigra J.F. Arnold), and scots pine (Pinus sylvestris L.) forests growing under wet Mediterranean, dry Mediterranean, and boreal climatic conditions, respectively, by comparing the mushrooms produced in severely burned Pinus forests in each area. Sporocarps were collected during the main sampling campaigns in non-burned plots, and in burned plots one year and five years after fire. A total of 182 taxa, belonging to 81 genera, were collected from the sampled plots, indicating a high level of fungal diversity in these pine forests, independent of the climatic conditions. The composition of the fungal communities was strongly affected by wildfire. Mycorrhizal taxa were impacted more severely by wildfire than the saprotrophic taxa, particularly in boreal forests—no mycorrhizal taxa were observed in the year following fire in boreal forests. Based on our observations, it seems that fungal communities of boreal P. sylvestris forests are not as adapted to high-intensity fires as the Mediterranean fungal communities of P. nigra and P. pinaster forests. This will have an impact on reducing fungal diversity and potential incomes in rural economically depressed areas that depend on income from foraged edible fungi, one of the most important non-wood forest products.


2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Francesca De Filippis ◽  
Manolo Laiola ◽  
Giuseppe Blaiotta ◽  
Danilo Ercolini

ABSTRACT Target-gene amplicon sequencing is the most exploited high-throughput sequencing application in microbial ecology. The targets are taxonomically relevant genes, with 16S rRNA being the gold standard for bacteria. As for fungi, the most commonly used target is the internal transcribed spacer (ITS). However, the uneven ITS length among species may promote preferential amplification and sequencing and incorrect estimation of their abundance. Therefore, the use of different targets is desirable. We evaluated the use of three different target amplicons for the characterization of fungal diversity. After an in silico primer evaluation, we compared three amplicons (the ITS1-ITS2 region [ITS1-2], 18S ribosomal small subunit RNA, and the D1/D2 domain of the 26S ribosomal large subunit RNA), using biological samples and a mock community of common fungal species. All three targets allowed for accurate identification of the species present. Nevertheless, high heterogeneity in ITS1-2 length was found, and this caused an overestimation of the abundance of species with a shorter ITS, while both 18S and 26S amplicons allowed for more reliable quantification. We demonstrated that ITS1-2 amplicon sequencing, although widely used, may lead to an incorrect evaluation of fungal communities, and efforts should be made to promote the use of different targets in sequencing-based microbial ecology studies. IMPORTANCE Amplicon-sequencing approaches for fungi may rely on different targets affecting the diversity and abundance of the fungal species. An increasing number of studies will address fungal diversity by high-throughput amplicon sequencing. The description of the communities must be accurate and reliable in order to draw useful insights and to address both ecological and biological questions. By analyzing a mock community and several biological samples, we demonstrate that using different amplicon targets may change the results of fungal microbiota analysis, and we highlight how a careful choice of the target is fundamental for a thorough description of the fungal communities.


2019 ◽  
Vol 112 (4) ◽  
pp. 348-355 ◽  
Author(s):  
Li-Lin Chen ◽  
Pei Yuan ◽  
Min-Sheng You ◽  
Gabor Pozsgai ◽  
Xu Ma ◽  
...  

Abstract Tea is an economically important crop, consumed by billions of people. Despite the increasing market for pesticide-free products, the use of pesticide in tea is still high. In order to investigate whether intercropping promotes biological control organisms, Chamaecrista rotundifolia (Pers.) Greene, Indigofera hendecaphylla Jacq., Trifolium repens L., and Vigna sinensis (L.) were separately intercropped with free weeding as control in a tea plantation at Yangli, China. Arthropods were collected by taking sweep-net samples, and treatment effects on assemblages were investigated. The combined species richness of all arthropods and that of parasitoids was significantly increased in intercropped treatments while the species richness of herbivores and predators was only greater in C. rotundifolia and I. hendecaphylla intercropped treatments. Compared with control, the combined abundance of all arthropods, and that of herbivores was lower, while the abundance of parasitoids and its taxa was greater in all intercropped treatments. The abundance of predators and its taxa was greater only in tea plantations intercropped with C. rotundifolia or I. hendecaphylla. Of the herbivores, the abundance of Empoasca onukii Matsuda, Sternorrhyncha, Aleyrodidae, and Pentatomidae was greater in the areas intercropped with C. rotundifolia in comparison with the control, but the abundance of Thysanoptera and Geometridae caterpillars was lower. The recorded increase in the abundance of beneficial arthropods may explain the lower abundance of Thysanoptera or Geometridae caterpillars detected in the intercropped tea plantations. Our results indicate that intercropping has the potential to enhance arthropod biodiversity, and to provide an option for sustainable pest control in tea plantations.


2019 ◽  
Author(s):  
Di Liu ◽  
Qinglin Chen ◽  
Pangzhen Zhang ◽  
Deli Chen ◽  
Kate S. Howell

AbstractThe flavours of foods and beverages are formed by the agricultural environment where the plants are grown. In the case of wine, the location and environmental features of the vineyard site imprint the wine with distinctive aromas and flavours. Microbial growth and metabolism play an integral role in wine production from the vineyard to the winery, by influencing grapevine health, wine fermentation, and the flavour, aroma and quality of finished wines. The mechanism by which microbial distribution patterns drive wine metabolites is unclear and while flavour has been correlated with bacterial composition for red wines, bacterial activity provides a minor biochemical conversion in wine fermentation. Here, we collected samples across six distinct winegrowing areas in southern Australia to investigate regional distribution patterns of both fungi and bacteria and how this corresponds with wine aroma compounds. Results show that soil and must microbiota distinguish winegrowing regions and are related to wine chemical profiles. We found a strong relationship between microbial and wine metabolic profiles, and this relationship was maintained despite differing abiotic drivers (soil properties and weather/ climatic measures). Notably, fungal communities played the principal role in shaping wine aroma profiles and regional distinctiveness. We found that the soil microbiome is a potential source of grape- and must-associated fungi, and therefore the weather and soil conditions could influence the wine characteristics via shaping the soil fungal community compositions. Our study describes a comprehensive scenario of wine microbial biogeography in which microbial diversity responds to surrounding environments and ultimately sculpts wine aromatic characteristics. These findings provide perspectives for thoughtful human practices to optimise food and beverage flavour and composition through understanding of fungal activity and abundance.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4534 ◽  
Author(s):  
Chi Zeng ◽  
Lingbing Wu ◽  
Yao Zhao ◽  
Yueli Yun ◽  
Yu Peng

Background Tea is one of the most economically important crops in China. However, the tea geometrid (Ectropis obliqua), a serious leaf-feeding pest, causes significant damage to tea crops and reduces tea yield and quality. Spiders are the most dominant predatory enemies in the tea plantation ecosystem, which makes them potentially useful biological control agents of E. obliqua. These highlight the need for alternative pest control measures. Our previous studies have shown that tea saponin (TS) exerts insecticidal activity against lepidopteran pests. Here, we investigate whether TS represents a potentially new alternative insecticide with no harm to spiders. Methods We investigated laboratory bioactivities and the field control properties of TS solution against E. obliqua. (i) A leaf-dip bioassay was used to evaluate the toxicity of TS to 3rd-instar E. obliqua larvae and effects of TS on the activities of enzymes glutathione-S-transferase (GST), acetylcholinesterase (AChE), carboxylesterase (CES) and peroxidase (POD) of 3rd-instar E. obliqua larvae in the laboratory. (ii) Topical application was used to measure the toxicity of 30% TS (w/v) and two chemical insecticides (10% bifenthrin EC and 50% diafenthiuron SC) to two species of spider, Ebrechtella tricuspidata and Evarcha albaria. (iii) Field trials were used to investigate the controlling efficacy of 30% TS against E. obliqua larvae and to classify the effect of TS to spiders in the tea plantation. Results The toxicity of TS to 3rd-instar E. obliqua larvae occurred in a dose-dependent manner and the LC50 was 164.32 mg/mL. Activities of the detoxifying-related enzymes, GST and POD, increased in 3rd-instar E. obliqua larvae, whereas AChE and CES were inhibited with time by treatment with TS. Mortalities of E. tricuspidata and E. albaria after 48 h with 30% TS treatment (16.67% and 20%, respectively) were significantly lower than those with 10% bifenthrin EC (80% and 73.33%, respectively) and 50% diafenthiuron EC (43.33% and 36.67%, respectively). The highest controlling efficacy of 30% TS was 77.02% at 5 d after treatment, which showed no difference to 10% bifenthrin EC or 50% diafenthiuron SC. 30% TS was placed in the class N (harmless or slightly harmful) of IOBC (International Organization of Biological Control) categories for natural enemies, namely spiders. Conclusions Our results indicate that TS is a botanical insecticide that has a good controlling efficacy in E. obliqua larvae, which suggests it has promise as application in the integrated pest management (IPM) envisaged for tea crops.


Author(s):  
Adrian Valdez ◽  
Sergio Covarrubias

The Andes range in Ecuador presents high biodiversity and characteristic altitudinal gradients, which are frequently threatened by deforestation and farming. In particular, forest have developed in the high inter-Andean alley on volcanic soils forming a unique ecoregion. Little is known on the fungal biodiversity of soil in such high Andean gallery forest submitted to strong degradation pressures. Therefore, in this study we evaluated wether the soil mycobiome was associated with altitudinal gradients during the dry season. Three representative locations were selected based on altitude: A (3,309 meters above the sea level, masl), B (3,809 masl) and C (4,409 masl). High performance sequencing (NGS) of the ITS region of ribosomal DNA genes with Illumina technology was used to explore the fungal taxonomic composition in the soil samples. Our results showed changes in the structure of fungal communities in the different locations, related to the relative abundance of Amplicon Sequence Variants (ASV). Higher fungal diversity was related with the altitudinal gradient with average taxa ranging from 675, 626 and 556 ASVs, respectively from location A to C. The results highlight the complexity and diversity of fungal communities in high Andean forest and the need to protect these unique mycobiomes. The findings in this ecosystem of Ecuador will improve our understanding of distribution, diversity, ecology, and biological perspectives for the restoration of terrestrial microbiomes.


2015 ◽  
Vol 11 (9) ◽  
pp. 20150408 ◽  
Author(s):  
Johan Pansu ◽  
Richard C. Winkworth ◽  
Françoise Hennion ◽  
Ludovic Gielly ◽  
Pierre Taberlet ◽  
...  

During the late nineteenth century, Europeans introduced rabbits to many of the sub-Antarctic islands, environments that prior to this had been devoid of mammalian herbivores. The impacts of rabbits on indigenous ecosystems are well studied; notably, they cause dramatic changes in plant communities and promote soil erosion. However, the responses of fungal communities to such biotic disturbances remain unexplored. We used metabarcoding of soil extracellular DNA to assess the diversity of plant and fungal communities at sites on the sub-Antarctic Kerguelen Islands with contrasting histories of disturbance by rabbits. Our results suggest that on these islands, the simplification of plant communities and increased erosion resulting from the introduction of rabbits have driven compositional changes, including diversity reductions, in indigenous soil fungal communities. Moreover, there is no indication of recovery at sites from which rabbits were removed 20 years ago. These results imply that introduced herbivores have long-lasting and multifaceted effects on fungal biodiversity as well as highlight the low resiliency of sub-Antarctic ecosystems.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 324
Author(s):  
Brianna K. Almeida ◽  
Michael S. Ross ◽  
Susana L. Stoffella ◽  
Jay P. Sah ◽  
Eric Cline ◽  
...  

Fungi play prominent roles in ecosystem services (e.g., nutrient cycling, decomposition) and thus have increasingly garnered attention in restoration ecology. However, it is unclear how most management decisions impact fungal communities, making it difficult to protect fungal diversity and utilize fungi to improve restoration success. To understand the effects of restoration decisions and environmental variation on fungal communities, we sequenced soil fungal microbiomes from 96 sites across eight experimental Everglades tree islands approximately 15 years after restoration occurred. We found that early restoration decisions can have enduring consequences for fungal communities. Factors experimentally manipulated in 2003–2007 (e.g., type of island core) had significant legacy effects on fungal community composition. Our results also emphasized the role of water regime in fungal diversity, composition, and function. As the relative water level decreased, so did fungal diversity, with an approximately 25% decline in the driest sites. Further, as the water level decreased, the abundance of the plant pathogen–saprotroph guild increased, suggesting that low water may increase plant-pathogen interactions. Our results indicate that early restoration decisions can have long-term consequences for fungal community composition and function and suggest that a drier future in the Everglades could reduce fungal diversity on imperiled tree islands.


Sign in / Sign up

Export Citation Format

Share Document