scholarly journals Transcriptomic Analysis of Patients With Clinical Suspicion of Maturity-onset Diabetes of the Young (MODY) With a Negative Genetic Diagnosis

Author(s):  
María E. Vázquez-Mosquera ◽  
Emiliano González-Vioque ◽  
Sofía Barbosa-Gouveia ◽  
Diego Bellido-Guerrero ◽  
Cristina Tejera-Pérez ◽  
...  

Abstract BackgroundThe personalized management of each type of Mature-onset diabetes of the young (MODY), a non-autoimmune monogenic form of diabetes mellitus, achieves both avoiding invasive therapies and better defining the patient's prognosis and reducing future misdiagnoses by performing a screening family. Positive genetic diagnosis is achieved in only around 50% of patients with clinical characteristics of this disease, which leads us to propose in this study to evaluate the diagnostic utility of transcriptomic analysis in patients with clinical suspicion of MODY but a negative genetic diagnosis using Nanostring nCounter technology.ResultsWe conducted transcriptomic analysis of 19 MODY-associated genes in peripheral blood samples from 19 patients and 8 healthy controls. Normalized gene expression was compared between patients and controls and correlated with each patient’s biochemical and clinical variables. Z-scores were calculated to identify significant changes in gene expression in patients versus controls. Only 7 of the genes analyzed were detected in peripheral blood. HADH expression was significantly lower in patients versus controls. Among patients with suspected MODY, GLIS3 expression was higher in obese versus non-overweight patients, and in patients aged <25 versus >25 years at diabetes onset. Significant alteration with respect to controls of any gene was observed in 31.6% of patients. ConclusionsAlthough blood does not appear to be an adequate sample for transcriptomic analysis of patients with suspected MODY, it does allow identification of potential molecular targets causing the disease in a considerable proportion of cases.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A414-A414
Author(s):  
Wells Messersmith ◽  
Drew Rasco ◽  
Johann De Bono ◽  
Andrea Wang-Gillam ◽  
Wungki Park ◽  
...  

BackgroundGB1275 is a first-in-class CD11b modulator in development as monotherapy and in combination with pembrolizumab or chemotherapy for the treatment of advanced solid tumors. Nonclinical data show that GB1275 reduced influx of tumor-associated myeloid-derived suppressor cells (MDSCs) and macrophages (TAMs), and repolarized M2 immuno-suppressive TAMs towards an M1 phenotype. We hypothesize that GB1275 administration can alleviate myeloid cell-mediated immunosuppressive effects and improve cancer treatment outcomes. A phase 1 trial evaluating GB1275 as monotherapy and in combination with pembrolizumab in specified advanced tumors in ongoing (NCT04060342).MethodsBlood gene expression variations as well as core tissue biopsies pre- and post-treatment were assessed following GB1275 monotherapy and combination with pembrolizumab. After obtaining informed consent, peripheral blood for MDSCs was collected from 21 patients pre- and two weeks post-treatment; core tissue biopsies were collected from 13 patients pre- and post-treatment. The frequency of MDSCs in whole blood was measured using the Serametrix MDSC FACS Assay. Gene expression transcriptome profiles were generated using NovaSeq platform. CD8 staining was performed at Neogenomics, and tumor infiltrating lymphocyte (TIL) quantification was performed by an independent pathologist.ResultsPreliminary statistical analysis of MDSC immunophenotyping pre- and post- treatment is consistent with the proposed mechanism of GB1275, showing modulation of peripheral blood MDSCs in some patients. Preliminary gene expression analysis in the blood showed dose-dependent clusters following treatment with GB1275 alone. Moreover, the transcriptomic analysis revealed two unique expression patterns for patients treated with GB1275 monotherapy or in combination with pembrolizumab. Gene Set Enrichment Analysis showed that the CD11b pathway is downregulated in patients treated with GB1275. Analyses of TIL count revealed an increase in lymphocyte trafficking into the tumor after treatment with GB1275 alone or in combination with pembrolizumab. CD8 expression and transcriptomic analysis are underway and will be presented.ConclusionsGB1275 alone or in combination with pembrolizumab demonstrates biological activity, which may be dose dependent. The observed increase in TILs after treatment is supportive of the mechanism of action of GB1275. Further biomarker analyses in blood and tissues are ongoing and will be correlated with clinical activity in a larger number of patients.Ethics ApprovalThis ongoing study is being conducted in accordance with the the Declaration of Helsinki and Council for International Organizations of Medical Sciences (CIOMS) International Ethical Guidelines. The study was approved by the Ethics Boards of University of Colorado Hospital, Washington University School of Medicine - Siteman Cancer Center, Memorial Sloan Kettering Cancer Center, The Sarah Cannon Research Institute/Tennessee Oncology, South Texas Accelerated Research Therapeutics, and The Royal Marsden NHS Foundation Trust.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4232-4232
Author(s):  
Moritz Binder ◽  
Ryan Carr ◽  
Nathalie Droin ◽  
Abhishek A Mangaonkar ◽  
Giacomo Coltro ◽  
...  

Introduction: Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic neoplasm characterized by sustained peripheral blood (PB) monocytosis and an inherent risk for leukemic transformation. Clonal origins of the disease can be detected in hematopoietic progenitor cells (CD34+/CD38-), while the complete spectrum of mutational evolution can be seen in circulating monocytes (CD14+). Cell sorting strategies have been employed to select cells in CMML, and while there are adequate monocyte numbers in the PB, there are very few circulating progenitor cells. In addition, attrition related to the selection process significantly depletes primary cells available for biological experiments and multiomics studies such as RNA-seq, ChIP-seq, ATAC-seq, and DIP-seq. While single-cell methods may be able to overcome this challenge, bulk sequencing methods remain a robust and cost-effective approach. We hypothesized that, secondary to the stem cell origin of this disease and significant myeloproliferation, PB mononuclear cells (MNC) would provide comparable results with regards to transcriptomic analysis, in comparison to cell selection procedures. Methods: Peripheral blood obtained from 15 molecularly annotated patients with WHO-defined CMML was ACK-lysed and subjected to a Ficoll procedure for collection of MNC. MNC were left unsorted (n=5) or further selected for CD34+/CD38- (n=5) and CD14+ (n=5) using a fully automated RoboSep-S (StemCell Technologies) protocol. All samples were then subjected to bulk whole transcriptome shotgun sequencing (using Illumina TruSeq and an Illumina HiSeq 4000). After data quality control, counts of detectable transcripts were log2-normalized and Pearson's product-moment correlation coefficients were calculated to evaluate the correlation between the two cell-sorting strategies and unsorted cells in terms of detectable transcripts. To visualize sample differences log2-normalized transcripts counts were centered and scaled per gene for a select number of genes relevant to myeloid biology as well as a number of housekeeping genes. Results: Fifteen patients with WHO-defined CMML, median age 69 years (55-73 years), 66% male, were included. Next generation sequencing for somatic mutations was performed on PB MNC obtained at CMML diagnosis (Figure 1, top heatmap). Considering the small sample size, mutations were evenly distributed among groups with the exception of ASXL1 (higher frequency in CD14+ and CD34+/CD38- cells), ZRSR2 (higher frequency in unsorted cells), and TET2 (lower frequency in CD14+ cells). The three groups were also well matched with regards to other CMML-related variables such as WHO and FAB morphological subtypes, cytogenetic abnormalities, and risk stratification by the Mayo Molecular Model. Transcriptomic analysis revealed a strong positive correlation between the median number of log2-normalized detectable transcripts in unsorted cells and CD34+/CD38- cells (ρ = 0.96, p < 0.001, top scatterplot). Likewise, there was a strong positive correlation between the median number of log2-normalized detectable transcripts in unsorted cells and CD14+ cells (ρ = 0.91, p < 0.001, bottom scatterplot). The latter correlation was marginally lower, which was explained by increased global gene expression in 3 of the 5 CD14+ samples (bottom heatmap). Increased gene expression in these 3 samples involved key myeloid genes and housekeeping genes known to have stable expression across human tissues alike. In comparison to PB MNC, both cell sorting strategies resulted in significant depletion of primary cells required for other experiments, and for procedures such as ChIP-seq, DIP-seq and ATAC-seq (CD34+/CD38- had greater depletion than CD14+). Additional experiments to assess this strategy for the above mentioned epigenetic studies are currently being planned. Conclusions: Accounting for sample differences, different cell sorting strategies (unsorted, CD34+/CD38- selection, and CD14+ selection) yielded similar results when performing bulk transcriptomic assessments on PB MNC from patients with CMML. For the purpose of gene expression profiling there was no clear advantage with CD34+/CD38- or CD14+ selection. These results support the use of unsorted cells for bulk transcriptomic analysis in CMML. Figure 1 Disclosures Patnaik: Stem Line Pharmaceuticals.: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document