scholarly journals Influence of Heat Treatment Technologies on the Structure and Properties of the Corrosion-Resistant Martensitic Steel Type AISI 420

2020 ◽  
Vol 7 (2) ◽  
pp. C10-C16
Author(s):  
O. Lupyr ◽  
T. Hovorun ◽  
S. Vorobiov ◽  
А. Burlaka ◽  
R. Khvostenko

One of the methods for increasing the complexity of chromium steel properties of martensitic class AISI 420 is the use of an optimal heat treatment mode. The steel of martensitic class AISI 420 has high resistance in atmospheric conditions (except for the sea atmosphere), in the river, and tap water. It is widely used in power engineering, in cracking units with a long service life at temperatures up to 500 °C, for furnace parts. Additionally, it is used in the following fields: the production of turbine blades, working in conditions of high temperatures and parts of increased plasticity, subject to shock loads, for products exposed to atmospheric precipitation, solutions of organic salts and other slightly aggressive environments; production of fasteners; production of parts for compressor machines operating with inert gas; production of parts operating at low temperatures in corrosive environments; production of parts for aviation purposes. It is shown that the optimal mode of heat treatment for a maximum hardness of 40 HRC is quenching at a temperature of 980 °C with cooling in oil and tempering at a temperature of 200 °C with air cooling. With an increase in the tempering temperature from 200 °C to 450–500°C, the impact strength does not change much. Tempering at higher temperatures leads to the intense weakening of the steel. Simultaneously, a decrease in the impact strength is observed, the minimum value is reached at a tempering temperature of 550 °C. With an increase in the tempering temperature to 700 °C, the impact toughness increases, but the steel’s hardness sharply decreases at such temperatures. Keywords: hardening, tempering, hardness, toughness, mechanical properties, chromium carbide.

2010 ◽  
Vol 146-147 ◽  
pp. 1009-1012 ◽  
Author(s):  
Ji Wen Li ◽  
Guo Shang Zhang ◽  
Shi Zhong Wei

A new wear resistance material named the hypoeutectic high carbon Fe-B cast steel with fine hard carbides dispersive distributed in the matrix have been investigated. The results show that the solidified structures of high carbon Fe-B steel consist of ferrite, pearlite and boride, and borides were distributed along grain boundary in interconnected network. After heat treatment, the metallic matrix changes into martensite and retained austenite. The eutectic borides are appeared to be less continuous network and isolated particles. The increasing of the quenching temperature leads to the improvement of hardness. Quenching at 980°C, impact toughness is increased with the increasing of the tempering temperature. The optimum heat treatment is quenching at 980°C(oil cooling) and tempering at 330°C(air cooling). The wear resistance of modified high carbon Fe-B cast steel is corresponding to Cr26 alloy. The impact wear mechanism is mainly plastic deformation and fatigue spalling.


2017 ◽  
Vol 17 (3) ◽  
pp. 55-58
Author(s):  
A. Jarco

Abstract The paper presents research on the effects of soft annealing parameters on a change of the impact strength KC and Brinell hardness (HB) of the EN AC-AlSi11 alloy. The research has been performed according to the trivalent testing plan for two input parameters – temperature in the range between 280°C and 370°C and time in the range between 2 and 8 hours. The application of such heat treatment improves the plasticity of the investigated alloy. The improvement of the impact strength KC by 71% and the decrease of the hardness HB by 20% was achieved for the soft annealing treatment conducted at a temperature 370°C for 8 hours, compared to the alloy without the heat treatment. A change of the form of eutectic silicon precipitations which underwent refinement, coagulation and partial rounding, had a direct effect on the hardness HB and impact strength KC. The results obtained were used to prepare space plots enabling the temperature and time for soft annealing treatment to be selected with reference to the obtained impact strength KC and hardness HB of the alloy with the heat treatment.


2017 ◽  
Vol 1 (2) ◽  
pp. 19
Author(s):  
Sotya Anggoro

<p>Corrosion occurs in almost all metals. Even corrosion-resistant metals are corroded, but their corrosion rate is different from ordinary or non-corrosion resistant metals. This study examines the corrosion rate that occurs in stainless steel that is stainless steel. Stainless steel contains high enough chromium levels that can reduce the rate of corrosion that occurs. The metal material to be studied is the AISI 420 steel, which belongs to the Martensitic Stainless Steel class. This study examined the effect of heat treatment on corrosion rate and hardness level of AISI 420 steel. The heat treatment carried out was Quenching at 1020<sup>o</sup>C with a holding time of 60minutes with an oil cooling medium. After quenching the subsequent heat treatment is tempering with temperature variations of temperature 200<sup>o</sup>C and 300<sup>o</sup>C with a resistance time of 45 minutes and air cooling media. The results of this study showed that the base material specimens had the highest corrosion rate of 0.569 mm/y. The lowest corrosion rate is in specimens with quenching process with a value of 0.267 mm/y. The highest Vickers hardness values were found in specimens with quenching process with a value of 551 kg/mm<sup>2</sup>. The lowest hardness value is in the specimen with tempering process at 300<sup>o</sup>C with 405 kg/mm<sup>2</sup>.</p>


2010 ◽  
Vol 139-141 ◽  
pp. 235-238
Author(s):  
De Qiang Wei

In this paper, the low alloy bainite ductile cast iron has been obtained by a new heat treatment technique of the step austempering in room-temperature machine oil. The effects of element boron, manganese and copper on structure and mechanical properties of the bainite ductile cast Iron in above-mentioned process are investigated. The phenomenon, hardness lag of the alloyed bainite ductile cast Iron, has been discussed. It shows that after the step austempering in room-temperature machine oil, the hardness will increases with the time. It is found that boron and manganese can increase the hardness and reduce the impact strength while copper can increase the impact strength. The results show that reasonable alloyed elements can improve mechanical properties of the bainite ductile cast Iron. Essentially, hardness lag of the alloyed bainite ductile cast Iron is resulted from solute drag-like effect.


Author(s):  
Hee Kyung Kwon ◽  
Byoung Koo Kim ◽  
Kuk Cheol Kim ◽  
Keun Ho Song ◽  
Jeong Tae Kim

Nuclear power plants have been operated for fifty years. Currently the managements of spent fuel are on progress vigorously. Casks for transportation and/or storage of spent nuclear fuel are usually made of SA350 low alloy steels. The wall thickness of the casks are greater than 300mm. But because leakage of nuclear fuel or radioactive material from unexpected brittle fracture is not acceptable, Nil-ductility transition temperatures of colder than −150°F are needed. The effects of chemical composition and heat treatment on low temperature impact properties of SA350 are investigated in this study. The microstructure of SA350 steel is composed of ferrite and pearlite. The variations of microstructure, low temperature impact properties and strength at room temperature with carbon, vanadium and manganese content are analyzed. To improve the low temperature impact properties, heat treatment at an temperature between quenching and tempering temperature is introduced. With the optimum combination of alloying elements and heat treatment, the impact properties can be improved down to the level of nil-ductility transition temperature −150°F.


1961 ◽  
Vol 83 (4) ◽  
pp. 551-556
Author(s):  
J. Bressanelli ◽  
J. Hoke

The impact strength of hardened Type 410 stainless steel is known to be adversely affected when the steel is tempered between 750 and 1050 F. However, a desirable combination of other properties may be obtained by tempering within this range. An investigation was performed to determine the extent of improvement in impact strength that may result from certain variations in heat-treating procedures. The hardening operation was studied thoroughly, and a large number of commercial heats was included in the program to establish the consistency of results. It was found that the cooling rate through the martensite transformation range has a significant effect upon the impact properties after subsequent tempering. Rapid cooling such as that which occurs during oil quenching is detrimental, but air cooling of 0.4-in-diameter bar samples was sufficiently slow to bring about a marked improvement. This improvement was present for samples tempered at all temperatures through 1000 F with the greatest degree of improvement occurring for samples tempered in the range of 700 to 900 F. No improvement was observed for samples tempered at 1100 F and above. Martempering procedures are particularly suited for taking advantage of this phenomenon.


2015 ◽  
Vol 656-657 ◽  
pp. 434-439 ◽  
Author(s):  
Sayyad Zahid Qamar

Belonging to the class of chromium tool steels, AISI H11 possesses very good toughness and hardness, and is therefore suitable for hot metalforming jobs performed at very high loads. Mostly used in fabrication of helicopter rotor blades, H11 also has great potential as a die steel in hot-work forging and extrusion. This alloy steel can be heat treated to increase the service life and dimensional accuracy of the die and tooling. Main aim of the current investigation was to formulate an optimum heat treatment strategy for H11 steel, especially for hot work applications. High-speed milling and electric discharge machining were used to fabricate samples for tensile and impact testing. After various types of heat treatment (annealing, austenitizing, air cooling or oil quenching, single and double tempering), these samples were tested for hardness, toughness (impact), yield strength, tensile strength, and ductility. Microstructural analysis was also performed to analyze the effect of heat treatment on mechanical properties. As tempering temperature increases, hardness initially increases and then starts to gradually decrease; impact strength first decreases and then increases; and yield strength exhibits a fluctuating pattern of initial decline followed by an increase and another decrease. Even though H11 steel is highly suitable for both hot and cold-work, it is surprisingly not a common choice for metalworking dies and tools. Results presented here can encourage die designers and hot-work practitioners to explore the versatility of this tool steel, and to adopt appropriate heat treatment strategies for different applications.


1984 ◽  
Vol 16 (4) ◽  
pp. 496-499
Author(s):  
V. K. Golubev ◽  
S. A. Novikov ◽  
Yu. S. Sobolev ◽  
H. A. Yukina

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5243
Author(s):  
Jia Fu ◽  
Chaoqi Xia

X6CrNiMoVNb11-2 supermartensitic stainless steel, a special type of stainless steel, is commonly used in the production of gas turbine discs in liquid rocket engines and compressor disks in aero engines. By optimizing the parameters of the heat-treatment process, its mechanical properties are specially adjusted to meet the performance requirement in that particular practical application during the advanced composite casting-rolling forming process. The relationship between the microstructure and mechanical properties after quenching from 1040 °C and tempering at 300–670 °C was studied, where the yield strength, tensile strength, elongation and impact toughness under different cooling conditions are obtained by means of mechanical property tests. A certain amount of high-density nanophase precipitation is found in the martensite phase transformation through the heat treatment involved in the quenching and tempering processes, where M23C6 carbides are dispersed in lamellar martensite, with the close-packed Ni3Mo and Ni3Nb phases of high-density co-lattice nanocrystalline precipitation created during the tempering process. The ideal process parameters are to quench at 1040 °C in an oil-cooling medium and to temper at 650 °C by air-cooling; final hardness is averaged about 313 HV, with an elongation of 17.9%, the cross-area reduction ratio is 52%, and the impact toughness is about 65 J, respectively. Moreover, the tempered hardness equation, considering various tempering temperatures, is precisely fitted. This investigation helps us to better understand the strengthening mechanism and performance controlling scheme of martensite stainless steel during the cast-rolling forming process in future applications.


Sign in / Sign up

Export Citation Format

Share Document