scholarly journals 750 PB 114 PARALLEL CHANGES IN AMMONIA, ARGININE AND PUTRESCINE CONTENT AND METABOLISM IN POTASSIUM-DEFICIENT CITRUS LIMON(L)

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 540e-540
Author(s):  
Yusheng Zheng ◽  
Carol J. Lovatt

Rough lemon seedlings [Citrus limon (L)] were hydroponically-cultured in complete Shive's nutrient solution (+K) or in Shive's nutrient solution with potassium omitted (-K) for a period of eight months. Fresh and dry weight of whole -K plants were reduced 4-fold (P<0.01). Nitrogen metabolism was monitored during this period in young, fully expanded leaves. Results showed that leaves of -K plants accumulated 2.5-fold more NH3-NH4 + than +K plants (P<0.01) and exhibited a concomitant increase in both activity of the de novo arginine biosynthetic pathway (2.5-fold) and free-arginine concentration (3.5-fold; P<0.001). Leaf proline content of -K plants increased 1.6-fold (P<0.05), while putrescine content increased 10-fold. Arginine decarboxylase activity was accelerated in -K plants.

1993 ◽  
Vol 20 (2) ◽  
pp. 173 ◽  
Author(s):  
RR Walker ◽  
DH Blackmore ◽  
Q Sun

An attempt was made to differentiate between the possible effects of high Cl- or Na+ ions on lemon leaf photosynthesis by treating grafted (Citrus limon (L.) Burm. f. cv. 'Taylor') plants with either NaCl or Na2SO4 to establish different foliar concentrations of Cl- or Na+. The rootstocks, Rangpur lime (C. reticulata var. austera hybrid?) and rough lemon (C. jambhiri), were chosen because Rangpur lime is known to be a good Cl- 'excluder' and rough lemon to be a poor Cl- 'excluder'. The grafted plants were initially treated for 7 weeks with nutrient solution (control) or nutrient solution containing 50 mol m-3 NaCl or 25 mol m-3 Na2SO4, after which time there were only marginal reductions in both photosynthetic rates and shoot growth, with the exception of 'Taylor' lemon on rough lemon roostock treated with NaCl where growth was affected more severely than the other treatments. Salinity levels were then doubled to 100 mol m-3 NaCl and 50 mol m-3 Na2SO4 and the plants treated for a further 8 weeks, causing significant increases in leaf Na+ and/or Cl- concentrations. Mature, 3-4-month-old leaves of 'Taylor' lemon on Rangpur lime rootstock treated with Na2SO4 for this period, contained c. 105 mol m-3 Na+ and c. 10 mol m-3 Cl- and had photosynthetic rates 60% lower than controls. Similar reductions in assimilation rate were seen in leaves on rough lemon roostock treated with NaCl containing c. 195 mol m-3 Cl- and c. 35 mol m-3 Na+. Smaller (35%) but significant reductions in assimilation rate were observed for trees on rough lemon roostock treated with Na2SO4, where the tagged leaves contained c. 40 mol m-3 Na+ and 50 mol m-3 SO42-. Leaf nitrogen concentrations were significantly reduced by treatment of trees with NaCl or Na2SO4 but, apart from small reductions in chlorophyll concentrations, there were no visible symptoms of nitrogen deficiency. Leaf turgor was not adversely affected. The data indicate that both Cl- and Na+ can reduce assimilation rates in salt-stressed lemon leaves, possibly because of poor compartmentation within leaves of either ion. Increases in leaf Na+ and Cl- accounted for 54-96% of the reduction in osmotic potential in 'Taylor' lemon leaves on trees treated with NaCl, whereas increases in Na+ and SO42- accounted for 33-71% of the reduction in osmotic potential in leaves on trees irrigated with Na2SO4. The greater increase in Cl- compared with the net increase of [Na+ + K+] in 'Taylor' leaves on rough lemon rootstocks was offset (65%) by reductions in malic and succinic acids. Proline increased significantly only in 'Taylor' leaves on Rangpur lime roostock treated with Na2SO4.


2004 ◽  
Vol 379 (3) ◽  
pp. 849-855 ◽  
Author(s):  
Catherine S. COLEMAN ◽  
Guirong HU ◽  
Anthony E. PEGG

l-Ornithine decarboxylase provides de novo putrescine biosynthesis in mammals. Alternative pathways to generate putrescine that involve ADC (l-arginine decarboxylase) occur in non-mammalian organisms. It has been suggested that an ADC-mediated pathway may generate putrescine via agmatine in mammalian tissues. Published evidence for a mammalian ADC is based on (i) assays using mitochondrial extracts showing production of 14CO2 from [1-14C]arginine and (ii) cloned cDNA sequences that have been claimed to represent ADC. We have reinvestigated this evidence and were unable to find any evidence supporting a mammalian ADC. Mitochondrial extracts prepared from freshly isolated rodent liver and kidney using a metrizamide/Percoll density gradient were assayed for ADC activity using l-[U-14C]-arginine in the presence or absence of arginine metabolic pathway inhibitors. Although 14CO2 was produced in substantial amounts, no labelled agmatine or putrescine was detected. [14C]Agmatine added to liver extracts was not degraded significantly indicating that any agmatine derived from a putative ADC activity was not lost due to further metabolism. Extensive searches of current genome databases using non-mammalian ADC sequences did not identify a viable candidate ADC gene. One of the putative mammalian ADC sequences appears to be derived from bacteria and the other lacks several residues that are essential for decarboxylase activity. These results indicate that 14CO2 release from [1-14C]arginine is not adequate evidence for a mammalian ADC. Although agmatine is a known constituent of mammalian cells, it can be transported from the diet. Therefore l-ornithine decarboxylase remains the only established route for de novo putrescine biosynthesis in mammals.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1161f-1161
Author(s):  
John D. Lea-Cox ◽  
Irwin E. Smith

Pine bark is utilized as a substrate in citrus nurseries in South Africa. The Nitrogen (N) content of pine bark is inherently low, and due to the volubility of N, must be supplied on a continual basis to ensure optimum growth rates of young citrus nursery stock. Three citrus rootstock (rough lemon, carrizo citrange and cleopatra mandarin) showed no difference in stem diameter or total dry mass (TDM) when supplied N at concentrations between 25 and 200 mg ·l-1 N in the nutrient solution over a 12 month growing period. Free leaf arginine increased when N was supplied at 400 mg·l-1 N. The form of N affected the growth of rough lemon. High NH4-N:NO3-N (75:25) ratios decreased TDM when Sulfur (S) was absent from the nutrient solution, but not if S was present. Free arginine increased in leaves at high NH4-N (No S) ratios, but not at high NH4-N (S supplied) ratios. Free leaf arginine was correlated with free leaf ammonia. These results have important implications for reducing the concentration of N in nutrient solutions used in citrus nurseries and may indicate that higher NH4-N ratios can be used when adequate S is also supplied.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 522d-522 ◽  
Author(s):  
J.W. Buxton ◽  
D.L. Ingram ◽  
Wenwei Jia

Geraniums in 15-cm pots were irrigated automatically for 8 weeks with a Controlled Water Table (CWT) irrigation system. Plants were irrigated with a nutrient solution supplied by a capillary mat with one end of the mat suspended in a trough below the bottom of the pot. The nutrient solution remained at a constant level in the trough. Nutrient solution removed from the trough was immediately replaced from a larger reservoir. The vertical distance from the surface of the nutrient solution and the bottom of the pot determined the water/air ratio and water potential in the growing media. Treatments consisted of placing pots at 0, 2, 4, and 6 cm above the nutrient solution. Control plants were irrigated as needed with a trickle irrigation system. Geraniums grown at 0,2 and 4 CWT were ≈25% larger than the control plants and those grown at 6 CWT as measured by dry weight and leaf area. Roots of plants grown at 0 CWT were concentrated in the central area of the root ball; whereas roots of plants in other treatments were located more near the bottom of the pot. Advantages of the CWT system include: Plant controlled automatic irrigation; no run off; optimum water/air ratio.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Pedro García-Caparrós ◽  
Cristina Velasquez Espino ◽  
María Teresa Lao

The reuse of drainages for cultivating more salt tolerant crops can be a useful tool especially in arid regions, where there are severe problems for crops water management. Dracaena deremensis L. plants were cultured in pots with sphagnum peat-moss and were subjected to three fertigation treatments for 8 weeks: control treatment or standard nutrient solution (D0), raw leachates from Chrysalidocarpus lutescens H. Wendl plants (DL) and the same leachate blending with H2O2 (1.2 M) at 1% (v/v) (DL + H2O2). After harvesting, ornamental and biomass parameters, leaf and root proline and total soluble sugar concentration and nutrient balance were assessed in each fertigation treatment. Plant height, leaf and total dry weight had the highest values in plants fertigated with leachates with H2O2, whereas root length, leaf number, RGB values and pigment concentration declined significantly in plants fertigated with leachates from C. lutescens with or without H2O2. The fertigation with leachates, regardless of the presence or absence of H2O2 increased root and leaf proline concentration. Nevertheless, root and leaf total soluble sugar concentration did not show a clear trend under the treatments assessed. Regarding nutrient balance, the addition of H2O2 in the leachate resulted in an increase in plant nutrient uptake and efficiency compared to the control treatment. The fertigation with leachates with or without H2O2 increased nitrogen and potassium leached per plant compared to plants fertigated with the standard nutrient solution. The reuse of drainages is a viable option to produce ornamental plants reducing the problematic associated with the water consumption and the release of nutrients into the environment.


Author(s):  
Mariam Alsanafi ◽  
Ryan D. R. Brown ◽  
Jeongah Oh ◽  
David R. Adams ◽  
Federico Torta ◽  
...  

AbstractDihydroceramide desaturase (Degs1) catalyses the introduction of a 4,5-trans double bond into dihydroceramide to form ceramide. We show here that Degs1 is polyubiquitinated in response to retinol derivatives, phenolic compounds or anti-oxidants in HEK293T cells. The functional predominance of native versus polyubiquitinated forms of Degs1 appears to govern cytotoxicity. Therefore, 4-HPR or celecoxib appear to stimulate the de novo ceramide pathway (with the exception of C24:0 ceramide), using native Degs1, and thereby promote PARP cleavage and LC3B-I/II processing (autophagy/apoptosis). The ubiquitin-proteasomal degradation of Degs1 is positively linked to cell survival via XBP-1s and results in a concomitant increase in dihydroceramides and a decrease in C24:0 ceramide levels. However, in the case of 4-HPR or celecoxib, the native form of Degs1 functionally predominates, such that the apoptotic programme is sustained. In contrast, 4-HPA or AM404 do not produce apoptotic ceramide, using native Degs1, but do promote a rectifier function to induce ubiquitin-proteasomal degradation of Degs1 and are not cytotoxic. Therefore, Degs1 appears to function both as an ‘inducer’ and ‘rectifier’ of apoptosis in response to chemical cellular stress, the dynamic balance for which is dependent on the nature of chemical stress, thereby determining cytotoxicity. The de novo synthesis of ceramide or the ubiquitin-proteasomal degradation of Degs1 in response to anti-oxidants, retinol derivatives and phenolic compounds appear to involve sensors, and for rectifier function, this might be Degs1 itself.


2011 ◽  
Vol 35 (1) ◽  
pp. 249-254
Author(s):  
José Pereira Carvalho Neto ◽  
Enilson de Barros Silva ◽  
Reynaldo Campos Santana ◽  
Paulo Henrique Grazziotti

Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.


1981 ◽  
Vol 38 (1) ◽  
pp. 309-318
Author(s):  
I. P. Oliveira ◽  
E. Malavolta

Nine cultivars of Phaseolus vulgaris L. were grown in nutrient solution to study the effect of boron on growth and mineral composition. Data obtained in thie study allowed for the following conclusions: (1) high levels of boron affected plant height, root length, dry weight of tops, dry weight of root, and total dry weight; (2) regression analysis was used to point out differential behaviour among cultivars in relation to boron concentration in nutrient solution; (3) the best mineral concentration in the plant tissue was obtained with application of 0,5 ppm of boron in the nutrient solution.


1971 ◽  
Vol 22 (3) ◽  
pp. 350-357
Author(s):  
Millicent C. Goldschmidt ◽  
Betty M. Lockhart

Sign in / Sign up

Export Citation Format

Share Document