scholarly journals DETERMINING COST OF PRODUCTION FOR THREE ALTERNATIVE NURSERY PRODUCTION METHODS

HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 439e-439
Author(s):  
C.C. Montgomery ◽  
B.K. Behe ◽  
J.L. Adrian ◽  
K.M. Tilt

Aboveground container production revolutionized woody plant production. In-ground pot-in-pot container production combines the benefits of container production with traditional field production. Our objective was to determine the specific costs of production for field-grown, aboveground container, and pot-in-pot production methods for Lagerstroemia indica. We found differences in production cost with varying levels of input required by each production method. Pot-in-pot production systems had higher fixed and variable costs and a higher initial capital investment compared to the other two production methods. However, per unit production costs were similar to aboveground container production due to lower labor and equipment requirements.

2019 ◽  
Vol 11 (13) ◽  
pp. 3580
Author(s):  
Iris Schröter ◽  
Marcus Mergenthaler

Aquaponics is an innovative food production method that combines the production of aquatic organisms with plant production. This can have environmental advantages such as reducing land conversion and resource input and waste output through nutrient cycling. To support the dissemination of aquaponics, key stakeholders need to be appropriately informed about this production method, an aspect that has received little attention so far. In this pilot study, visual perception of information about aquaponics was explored using eye tracking combined with a questionnaire. The results show that people distinguish between aquaponics variants when evaluating aquaponics. A production system with a more natural appearance is preferred. Allocation of visual attention is linked to the specific information content and to the assessment of the naturalness of aquaponics production. The results of the present study could form a basis for further research, not only to make information about food production systems more appropriate but also to develop food production systems in a way that people become more aware of the sustainability aspects of production methods and its products.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2558 ◽  
Author(s):  
Andrew Ristvey ◽  
Bruk Belayneh ◽  
John Lea-Cox

Water security in ornamental plant production systems is vital for maintaining profitability. Expensive, complicated, or potentially dangerous treatment systems, together with skilled labor, is often necessary to ensure water quality and plant health. Two contrasting commercial ornamental crop production systems in a mesic region are compared, providing insight into the various strategies employed using irrigation-water containment and treatment systems. The first is a greenhouse/outdoor container operation which grows annual ornamental plants throughout the year using irrigation booms, drip emitters, and/or ebb and flow systems depending on the crop, container size, and/or stage of growth. The operation contains and recycles 50–75% of applied water through a system of underground cisterns, using a recycling reservoir and a newly constructed 0.25 ha slow-sand filtration (SSF) unit. Groundwater provides additional water when needed. Water quantity is not a problem in this operation, but disease and water quality issues, including agrochemicals, are of potential concern. The second is a perennial-plant nursery which propagates cuttings and produces field-grown trees and containerized plants. It has a series of containment/recycling reservoirs that capture rainwater and irrigation return water, together with wells of limited output. Water quantity is a more important issue for this nursery, but poor water quality has had some negative economic effects. Irrigation return water is filtered and sanitized with chlorine gas before being applied to plants via overhead and micro-irrigation systems. The agrochemical paclobutrazol was monitored for one year in the first operation and plant pathogens were qualified and quantified over two seasons for both production systems. The two operations employ very different water treatment systems based on their access to water, growing methods, land topography, and capital investment. Each operation has experienced different water quantity and quality vulnerabilities, and has addressed these threats using a variety of technologies and management techniques to reduce their impacts.


2018 ◽  
Vol 197 ◽  
pp. 14008
Author(s):  
Rahmi M Sari ◽  
Mangara M Tambunan ◽  
Khalida Syahputri ◽  
Anizar Anizar ◽  
Ikhsan Siregar ◽  
...  

The plastic jute sack is one of the most popular rice packaging products in the market. One type of plastic jute sack used is LDPE type. The LDPE sacks used for rice packaging often-experiencing fluctuations in market demand. Fluctuating demand is a certain problem for companies in determining the number of production to meet the demand. It can be seen from the frequent over production companies and stock out at each period. Overproduction problem has an impact to increase production costs. Stock resulted in lost sales experienced adversely affected the company, especially from production cost. Based on the problems, the company must immediately performs an optimal production planning to handle various problems in the company. One method for saving the optimal cost production can be used is dynamic programming. This method aims to obtain the optimal number of production accordance to market demand. This research is done to reduce cost by optimizing number of production. Method that used to solve the problem is dynamic programming. By using this method, the company will obtain optimum production number with minimum production cost and considering total capacity available of the company. From the dynamic programming results obtained optimal production number with cost savings about 2.1%.


2003 ◽  
pp. 82-84
Author(s):  
Zsolt Dénes Sulyok

In our days, ecologiacal and economic models of agricultural application are of ever increasing significance. These provide an opportunity for more accurate planning, and thus can favourably influence the efficiency and the economic situation of the given enterprise. The relevant literature divides models according to various criteria. The most common is the division between optimising and non-optimising models. Non-olptimising models generally endeavour to make the best use of technological lines, of machine capacity, while optimising models are used to optimise revenues returns from sales; or occasionally, production costs. In our case revenue and returns from sales were optimised. The models examined consists of several modules. These are the following: plant cultivation modules, evaluations (assessment of situation, conception plan, complex corporate evaluation), supplementary sheets (sheets and charts for ancillary plant production, general costs of operation, summary and crops structure optimisation). With the help of the model annual plans of plant cultivation can be made an optimal crop structure may be planned with the resources of the enterprise taken into consideration, and thereby it becomes possible to define the largest net revenue on a corporate level.


2015 ◽  
Vol 25 (5) ◽  
pp. 651-656 ◽  
Author(s):  
Benjamin L. Green ◽  
Richard W. Harper ◽  
Daniel A. Lass

Urban foresters must be able to accurately assess costs associated with planting trees in the built environment, especially since resources to perform community forest management are limited. Red oak (Quercus rubra) and swamp white oak (Q. bicolor) (n = 48) that were produced using four different nursery production systems—balled and burlapped (BNB), bare root (BR), pot-in-pot container grown (PIP), and in-ground fabric (IGF)—were evaluated to determine costs of planting in the urban environment. Costs associated with digging holes, moving the trees to the holes, and planting the trees were combined to determine the mean cost per tree: BNB trees cost $11.01 to plant, on average, which was significantly greater than PIP ($6.52), IGF ($5.38), and BR ($4.38) trees. Mean costs for BR trees were significantly lower than all other types of trees; IGF trees were less expensive to plant (by $1.14) than PIP trees, but this difference was not statistically significant (P = 0.058). Probabilities that cost per tree are less than specific values also are calculated. For example, the probabilities that IGF and BR can be planted for less than $8.00 per tree are 1.00. The probability that a PIP can be planted for less than $8.00 is 0.86, whereas the probability for a BNB tree is just 0.01. This study demonstrates that the cost of planting urban trees may be affected significantly in accordance with their respective nursery production method.


HortScience ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 201-203
Author(s):  
Kevin C. Power ◽  
Jay B. Fitzgerald ◽  
George E. Meyer ◽  
Dennis D. Schulte

A microcomputer program has been developed to keep records on energy, labor costs, product pricing, and revenue predictions for greenhouse and nursery production. The program manages plant production data, potentially enabling the grower to improve production and profits. The grower can use the program to determine how much it costs to produce individual plants, to ascertain labor costs and where to reallocate employees. Advertising and other indirect costs can be included to determine cost of production on a per-plant or per-square-foot basis.


HortScience ◽  
2016 ◽  
Vol 51 (4) ◽  
pp. 383-387 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall

The objective of this study was to examine the differences in global warming potential (GWP) and variable cost structure of a 5-cm-caliper red maple tree grown using two alternative production methods including a traditional field [balled and burlapped (BNB)] production system and a containerized, pot-in-pot (PIP) production system. Feedback from nursery growers was obtained to model each production system including the labor required for each cultural practice, materials used, and the hourly usage of tractors and other equipment. Findings from the study indicate that the total system GWP and variable cost for the PIP tree system is −671.42 kg of carbon dioxide equivalent (CO2e) and $250.76, respectively, meaning that the tree sequesters much more carbon during its life than is emitted during its entire life cycle. The same holds true for the BNB tree; however, in this system, the GWP of the tree −666.15 kg CO2e during its life cycle at a total variable cost of $236.13. Thus, the BNB tree costs slightly less to produce than its PIP counterpart but the life cycle GWP is slightly less positive as well.


2013 ◽  
Vol 39 (5) ◽  
Author(s):  
Anna Levinsson

After transplanting, many trees enter a period of reduced growth that may limit their environmental and aesthetic benefits for several years. A number of nursery production methods have been developed in attempt to reduce root disturbance, which is often associated with the reduced growth. The main objective of this study was to investigate how five nursery production methods affect root systems and post-transplant shoot growth. Other objectives were the study of the effect of root structure (i.e., fibrous verses coarse) on trees’ response to different production methods and the effect of the conditions at the transplanting site. Sweet cherry (Prunus avium L.) and red oak (Quercus rubra L.) with a stem circumference of 16–18 cm were produced as bare-rooted-, balled-and-burlapped-, root-pruned-, air-potted-, or fabric-container-grown trees, transplanted at two sites and studied for five seasons. Visual analysis showed that the production methods had clear effect on the root balls at transplanting. However, the differences were not clearly related to shoot growth. All transplanted red oaks, regardless of production method, showed significantly reduced shoot growth compared to pre-transplant growth. Balled and burlapped, root-pruned, and fabric-container-grown sweet cherry trees exhibited restored pre-transplant shoot growth three years after transplanting at the more favorable site. The results suggest that the fibrous-rooted sweet cherry was more responsive to production methods designed to reduce transplanting stress than the coarse-rooted red oak, and that site affected the time required for normal shoot growth to be regained. The results do not indicate that different sites require differently produced trees.


2020 ◽  
Vol 8 (2) ◽  
pp. 128-149
Author(s):  
Dini Maulana Lestari

This paper will discuss about the immaterial costs and production yields at one of the refined sugar factory companies in Makassar, South Sulawesi. The theory is based on the fact that Immaterial is a cost that is almsgiving, meaning costs that are outside of the basic costs of the company in producing production, so this research aims to find out: (1) what is the production cost needed to produce this production, (2) the maximum level of production at company from 2013 to 2017. This type of research is a quantitative study because it uses a questionnaire in the form of values ​​that are processed using the marginal cost approach formula. The results of the analysis show that (1) the maximum level of production costs occurred in 2016 amounting to 6,912 with an Immaterial cost of Rp. 2,481,796,800 and the total production produced is 359,077.3 tons (2) The required workforce with the total production produced is 359,077.3 tones of 180 people including the maximum production point which means that the lowest value is achieved (optimal).    


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Nurul Mukminah ◽  
Rita Purwasih

This study aims to determine and compare the profitability of different types of broiler chicken farms (open and cloused houses) in Subang Regency. This study involved 9 farmers consisting of 5 farmers with closed house and 4 farmers with open house who partnered with PT. Surya Unggas Mandiri (PT. SUM). Production costs taken are 2 production periods from May-August 2018. Data are analyzed using economic analysis and descriptive methods. The results showed that the production cost per period per 1000 birds closed house was higher (Rp. 27.656.768,-) compared to open house (Rp. 24.975.671,-). The revenue per period per 1000 birds of closed house is higher (Rp. 30.606.931,-) compared to open house (Rp. 25.788.618,-). The profit of farmers who use closed house is higher (Rp. 2.621/period/bird) than open house (Rp.417,-). The profitability in close house s is 9.48% and is very feasible to develop


Sign in / Sign up

Export Citation Format

Share Document