scholarly journals Effects of Municipal Solid Waste (MSW) Compost Mulch on Growth, Yield, and Soil Analysis of Papaya (Carica papaya L.)

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 843G-843
Author(s):  
Monica Ozores-Hampton ◽  
Herbert H Bryan

Municipal solid waste compost was applied with a side delivery applicator on top of the bed as a mulch in May 1993, 6 months after transplanting at Homestead, Fla. Papaya (`Know You No 1') was grown with and without compost mulch. Compost was distributed on the surface of the bed ≈90 cm wide and 5 cm thick. There were no mulch effects on trunk diameter nor plant height. Plant height was affected by papaya sex 4 and 6 months after transplanting. Hermaphroditic plants were taller than female plants. There were no mulch effects on marketable yield per plant, marketable size, or number of cull fruit. Sex, however, influenced papaya size and total cull number. Hermaphroditic plants produced larger marketable fruit and more cull fruits than female plants. Lower plant mortality rates were found after 1.5 years in the mulched plants compared to unmulched plants. Soil and tissue analysis showed no differences in N, P, K, Mg, S, Mn, Fe, Cu, and B, except for Zn. Zinc contents in soil and tissue were higher in the mulched areas than unmulched areas.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1066a-1066 ◽  
Author(s):  
N.E. Roe ◽  
S.R. Kostewicz ◽  
H.H. Bryan

Several companies and government agencies are now making municipal solid waste (MSW) composts. This study was undertaken to test effects of a MSW compost with different rates of fertilizer on broccoli. Treatments were compost at 0, 6.7, 13.5 and 26.9 MT/ha and fertilizer at 84 and 168 kg/ha N on a, fine sand soil. Treatments were applied, rototilled, and beds formed and covered with black plastic. Broccoli cv. `Southern Comet' transplants were set on March 2 with 46 cm between plants, 2 rows/bed, and beds centered at 1.8 m. Mature heads 15 cm and larger were harvested on April 25. Numbers of heads and total weight of heads were recorded and average head weights were calculated. Data analysis indicated main effect significance for fertilizer rate but not for compost rate with no interactions. The 168 kg/ha level of N resulted in a yield of 5795 kg/ha while the 84 kg/ha level produced 3849 kg/ha. Average head weights were 264, 262, 257, and 252 g; and marketable yield were 5.0, 4.8, 5.0, and 4.5 MT/ha; at 0, 6.7, 13.5, and 26.9 MT/ha, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hadi Dehghani ◽  
Mehdi Salari ◽  
Rama Rao Karri ◽  
Farshad Hamidi ◽  
Roghayeh Bahadori

AbstractIn the present study, reactive red 198 (RR198) dye removal from aqueous solutions by adsorption using municipal solid waste (MSW) compost ash was investigated in batch mode. SEM, XRF, XRD, and BET/BJH analyses were used to characterize MSW compost ash. CNHS and organic matter content analyses showed a low percentage of carbon and organic matter to be incorporated in MSW compost ash. The design of adsorption experiments was performed by Box–Behnken design (BBD), and process variables were modeled and optimized using Box–Behnken design-response surface methodology (BBD-RSM) and genetic algorithm-artificial neural network (GA-ANN). BBD-RSM approach disclosed that a quadratic polynomial model fitted well to the experimental data (F-value = 94.596 and R2 = 0.9436), and ANN suggested a three-layer model with test-R2 = 0.9832, the structure of 4-8-1, and learning algorithm type of Levenberg–Marquardt backpropagation. The same optimization results were suggested by BBD-RSM and GA-ANN approaches so that the optimum conditions for RR198 absorption was observed at pH = 3, operating time = 80 min, RR198 = 20 mg L−1 and MSW compost ash dosage = 2 g L−1. The adsorption behavior was appropriately described by Freundlich isotherm, pseudo-second-order kinetic model. Further, the data were found to be better described with the nonlinear when compared to the linear form of these equations. Also, the thermodynamic study revealed the spontaneous and exothermic nature of the adsorption process. In relation to the reuse, a 12.1% reduction in the adsorption efficiency was seen after five successive cycles. The present study showed that MSW compost ash as an economical, reusable, and efficient adsorbent would be desirable for application in the adsorption process to dye wastewater treatment, and both BBD-RSM and GA-ANN approaches are highly potential methods in adsorption modeling and optimization study of the adsorption process. The present work also provides preliminary information, which is helpful for developing the adsorption process on an industrial scale.


2012 ◽  
Vol 36 (3) ◽  
pp. 803-812 ◽  
Author(s):  
Juliana Lundgren Rose ◽  
Cláudio Fernando Mahler ◽  
Ronaldo Luis dos Santos Izzo

Landfill gas emissions are one of the main sources of anthropogenic methane (CH4), a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic) as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW) compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.


2014 ◽  
Vol 64 ◽  
pp. 142-150 ◽  
Author(s):  
Youssef Ouni ◽  
Alfonso Albacete ◽  
Elena Cantero ◽  
Abdelbasset Lakhdar ◽  
Chedly Abdelly ◽  
...  

1993 ◽  
Vol 3 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Carl J. Rosen ◽  
Thomas R. Halbach ◽  
Bert T. Swanson

Composting of municipal solid waste (MSW) has received renewed attention as a result of increasing waste disposal costs and the environmental concerns associated with using landfills. Sixteen MSW composting facilities are currently operating in the United States, with many more in the advanced stages of planning. A targeted end use of the compost is for horticultural crop production. At the present time, quality standards for MSW composts are lacking and need to be established. Elevated heavy metal concentrations in MSW compost have been reported; however, through proper sorting and recycling prior to composting, contamination by heavy metals can be reduced. Guidelines for safe metal concentrations and fecal pathogens in compost, based on sewage sludge research, are presented. The compost has been shown to be useful in horticultural crop production by improving soil physical properties, such as lowering bulk density and increasing water-holding capacity. The compost can supply essential nutrients to a limited extent; however, supplemental fertilizer, particularly N, is usually required. The compost has been used successfully as a sphagnum peat substitute for container media and as a seedbed for turf production. High soluble salts and B, often leading to phytotoxicity, are problems associated with the use of MSW compost. The primary limiting factor for the general use of MSW compost in horticultural crop production at present is the lack of consistent, high-quality compost.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 533F-534
Author(s):  
Catherine S.M. Ku ◽  
John C. Bouwkamp

Production of `Top White', `Peterstar Pink', `Lilo Red', and `Red Success' poinsettias were evaluated in a treatment combinations that included 10 compost blends, three compost levels, and two commercial soilless substrates of Sunshine Mix 1 and Pro Gro 300S as controls. The compost feedstocks included PSG polymer dewatered biosolids (PSG), lime dewatered biosolids (CP), yard trimmings (YT), poultry litter (PL), and municipal solid waste (MSW Bedmininster). The PSG, PL, YT, and MSW were co-blended with CP on a 2:1 ratio (v/v), all other composts were co-blended on a 1:1 ratio (v/v). The compost levels of 33%, 50%, and 67% were mixed with peat:perlite (1:1, v/v). There were five replicates per treatment. Plants were fertilized once weekly with 200 mg·L–1 N from 21N–2.2P–16.6K. Sunshine mix produced control plants that had greater canopy diameter and plant grade than Pro Gro mix. Plant height was reduced as compost level increased from 33% to 67%. Blends of PSG:PL at the 33% and 50% levels and PSG:YT at the 33% level produced premium-quality plants. Good-quality plants, similar to those grown in Sunshine Mix, were produced with the PSG or PL compost blended with immature MSW at the 33% level; PSG:PL blend at a 67% level; PSG:YT blend at the 50% and 67% levels; and PL:YT blend at the 33% level.


1999 ◽  
Vol 9 (1) ◽  
pp. 59-65 ◽  
Author(s):  
A.P. Papadopoulos ◽  
S. Pararajasingham ◽  
X. Hao

Experiments were carried out to evaluate two salts, K2SO4 and NaCl, as materials to supplement the electrical conductivity (EC) of the basic nutrient solution in nutrient film technique (NFT). The effects of these materials on the growth, yield and fruit quality of greenhouse tomato (Lycopersicon esculentum Mill.) grown by NFT were quantified. These effects were tested by increasing the recirculating solution EC from a base value of 1500 μS·cm-1 to that suitable for the crop growth stage with normal feed (macronutrients), 0.38 m (0.53 lb/gal) K2SO4 or 1.14 m (0.55 lb/gal) NaCl, at a common pH of 6.2. In 1995 and 1996, there were no significant effects of the treatments on crop growth. In 1995, the early marketable yield was significantly lower when K2SO4 was used but the yield at the end of the season did not differ among the treatments. Furthermore, with K2SO4, the proportion of grade #1 fruit in early total yield was lower than in the control, while, fruit biomass content was higher than in the NaCl treatment. In 1996, the cumulative marketable fruit weight was unaffected by the treatments. A trend toward high number of large grade fruit occurred with the NaCl treatment. The pH and EC of the fruit homogenate were favorably affected by the NaCl treatment. Adding K2SO4 or NaCl in partial substitution of macronutrients in the recirculating solution may have a role in NFT systems in not only reducing environmental pollution (from nitrates and phosphates) and fertilizer costs, but also in improving fruit quality and, therefore, profit margins.


Author(s):  
Marufa Sultana ◽  
Mohammad Jahiruddin ◽  
Mohammad Rafiqul Islam ◽  
Mohammad Mazibur Rahman ◽  
Md. Anwarul Abedin

Composting of municipal solid waste (MSW) is a good option for solid waste recycling, but its use by the farmers is limited because of its very low nutrient status. Aims: The study aimed at nutrient enrichment of marketed MSW compost by using some organic materials and evaluating the influence of nutrient enriched MSW compost on yield and nutrient content of cabbage (Brassica oleracea L.). Place and Duration of Study: MSW compost amendment, field experiment and nutrient analysis were carried out at Bangladesh Agricultural University (BAU), Mymensingh during October 2017 to June 2018. Methodology: We prepared three types of amended compost by mixing 20% mustard oil cake (MOC), and 30% poultry manure (PM) or cow dung (CD) or sugarcane press mud (SPM) with 50% MSW compost. A liquid culture of Trichoderma viride was inoculated to every type of compost. The field experiment was conducted to evaluate the performance of the amended MSW composts on yield and nutrient content of cabbage (cv. Atlas-70), and on soil fertility. The experimental soil was silt loam having 6.7 pH and 2.79% organic matter; according to Soil Taxonomy it belongs to Aeric Haplaquept under the order Inceptisols. Results: Based on the yield and nutrient concentration (N, P, K & S) of cabbage, the treatment containing 50% fertilizers + 50% compost mixture (MSW compost + MOC + SPM in a ratio of 5:2:3) demonstrated the best result followed by poultry manure amended compost. Use of the amended composts had residual effects on soil showing an increased N, P, K & S content. Conclusion: Organic amendment of MSW compost inoculated with Trichoderma is a noble means to increase the nutrient status of marketed MSW compost and improve the soil fertility and crop productivity. The results have significant value in fertilizer management strategies for vegetables cultivation in sub-tropical countries.


2013 ◽  
Vol 2 ◽  
pp. 1-10
Author(s):  
P.O. Simeon ◽  
B. Ambah

A pot experiment was conducted in the green house to determine the effect of municipal solid waste on the growth of maize (Zea mays). Growth parameters of percentage emergence, plant height, leaf area and number of levers per plant were collect and subjected into statistical analysis, using ANOVA and fisher’s L.S.D. at 5% probability level. Plant growth parameters decreased with increase in cropping cycle. Similarly, maize grown on dumpsite soils did better than the control soil samples. It show increase in plant height, leaf area and number of leaves per plant at a range of 16.82 cm to 12.87 cm, 5 to 4 and 64.69 cm to 59.88 cm for the dumpsite and control samples respectively. Soil PH, organic matter (OM), total Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca), Magnesium (Mg), Sodium (Na) and Effective Cat-ion Exchange Capacity (ECEC) decreased with increase in cropping cycle respectively. The Dumpsite soil sample recorded higher mean values than the control (P < 0.05). There is every indication that municipal solid waste is beneficial to plant if only proper and careful sorting and separation of hazardous waste is done.


2020 ◽  
Vol 12 (10) ◽  
pp. 4287
Author(s):  
Nikolaos Tzortzakis ◽  
Christos Saridakis ◽  
Antonios Chrysargyris

Low-fertility soil and the use of brackish water for irrigation act as obstacles and limit crop production. The utilization of municipal solid waste (MSW), compost (C), and treated wastewater (TWW) is receiving attention nowadays not only to overcome the above limitations but also as an efficient way for waste management and reuse of raw materials. In the present study, MSW compost in different ratios (5%, 10%, 20%, and 40%), fertigation and/or irrigation with TWW were studied in tomato plants (Solanum lycopersicum L.). The addition of compost increased organic content, pH, electrical conductivity (EC), and mineral content of the growing media, while fertigation and TWW supported the mineral status of the growing media, and this was reflected in the increase of N, K, and Na in tomato leaves. Plants grown in compost-based media with fertigation produced more leaves, compared to the control, while irrigation with TWW did not increase the number of leaves. Plant biomass increased with the application of ≥20% C, fertigation, and/or TWW applications. Plant yield increased in 40% C, while fertigation increased yield in case of lower (5%-10% C) compost ratios, but TWW application did not change the yield. The combination of high C ratios and fertigation and/or TWW decreased tomato fresh weight. Different levels of C did not affect leaf photosynthesis, stomatal conductance, internal CO2 concentration, and chlorophyll fluorescence, but, in general, the combination of compost with fertigation and/or TWW affected them negatively. Fruit total soluble solids, acidity, ascorbic acid, firmness, and total phenolics were increased with the high ratios of compost and/or fertigation and TWW applications, but marketability did not. Bacteria (total coliform and Escherichia coli) units increased in growing media subjected to TWW, but lower levels were counted on the fruit, mainly due to splashing or fruit contact with the soil. The results indicate that up to 40% C can be added into the substrate, as increased plant growth and maintained plant yield for greenhouse tomato cultivation is observed, while fertigation and TWW could be used in a controlled manner as alternative means for nutrient and irrigation in vegetables following safety aspects.


Sign in / Sign up

Export Citation Format

Share Document