scholarly journals “Green” Water Treatment for the Green Industries: Opportunities for Biofiltration of Greenhouse and Nursery Irrigation Water and Runoff with Constructed Wetlands

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 690c-690
Author(s):  
R.D. Berghage

Constructed wetland biofilters have been widely used in recent years to provide secondary or tertiary water treatment, effectively reducing BOD, TSS, nitrate and ammonium, and some organic pollutants from municipal, industrial, and agricultural waste sources. The greenhouse and nursery industries, like all agricultural enterprises, have found themselves under increasing pressure to reduce or eliminate discharge of contaminated wastewater. In response, many greenhouse and nursery operators have installed, and are using, a variety of runoff containment and recirculating irrigation systems. While effective in reducing or eliminating wastewater discharge, these systems can become contaminated themselves and require treatment of the water before it can be reused in the irrigation system. Further, if the water should become contaminated and unusable, environmental discharge of this spent water from a recirculating irrigation system is perhaps even more problematic than simply allowing the excess irrigation water to be dumped in the first place. Potential contaminants in a recirculating irrigation system could include pesticide and other organic residues, excess fertilizer and non-fertilizer salts, and plant pathogens. The primary concern in greenhouse and nursery discharge wastewater is usually fertilizer salts, although pesticide and other organic chemical residues may also be of concern. Biological filtration using constructed wetlands may be a simple low-cost method for greenhouses and nurseries to treat these contaminants.

2020 ◽  
Vol 0 (2) ◽  
pp. 21-25
Author(s):  
Nikolay Dubenok ◽  
Andrey Novikov ◽  
Sergei Borodychev ◽  
Maria Lamskova

At the stage of water treatment for irrigation systems, the efficiency capture coarse and fine mechanical impurities, as well as oil products and organic compounds affects the reliability of the equipment of the irrigation network and the safety of energy exchange processes in irrigated agricultural landscapes. The violation of work irrigation system can cause disruptions in irrigation schedules of agricultural crops, crop shortages, degradation phenomena on the soil and ecological tension. For the combined irrigation system, a water treatment unit has been developed, representing a hydrocyclone apparatus with a pipe filter in the case. For the capacity of 250 m3/h the main geometrical dimensions of hydrocyclone have been calculated. To organize the capture petroleum products and organic compounds, it has been proposed a modernization of a hydrocyclone unit, consisting in dividing the cylindrical part of the apparatus into two section. The first is section is for input irrigation water, the second one is for additional drainage of clarified irrigation water after sorption purification by the filter, placed on the disk and installed coaxially with the drain pipe and the pipe filter.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 459 ◽  
Author(s):  
Adas Marčiulynas ◽  
Diana Marčiulynienė ◽  
Jūratė Lynikienė ◽  
Artūras Gedminas ◽  
Miglė Vaičiukynė ◽  
...  

The aim of the present study was to assess fungal and oomycete communities in the irrigation water of forest nurseries, focusing on plant pathogens in the hope of getting a better understanding of potential pathogenic microorganisms and spreading routes in forest nurseries. The study sites were at Anykščiai, Dubrava, Kretinga and Trakai state forest nurseries in Lithuania. For the collection of microbial samples, at each nursery five 100-L water samples were collected from the irrigation ponds and filtered. Following DNA isolation from the irrigation water filtrate samples, these were individually amplified using ITS rDNA as a marker and subjected to PacBio high-throughput sequencing. Clustering in the SCATA pipeline and the taxonomic classification of 24,006 high-quality reads showed the presence of 1286 non-singleton taxa. Among those, 895 were representing fungi and oomycetes. The detected fungi were 57.3% Ascomycota, 38.1% Basidiomycota, 3.1% Chytridiomycota, 0.8% Mucoromycota and 0.7% Oomycota. The most common fungi were Malassezia restricta E. Guého, J. Guillot & Midgley (20.1% of all high-quality fungal sequences), Pezizella discreta (P. Karst.) Dennis (10.8%) and Epicoccum nigrum Link (4.9%). The most common oomycetes were Phytopythium cf. citrinum (B. Paul) Abad, de Cock, Bala, Robideau, Lodhi & Lévesque (0.4%), Phytophthora gallica T. Jung & J. Nechwatal (0.05%) and Peronospora sp. 4248_322 (0.05%). The results demonstrated that the irrigation water used by forest nurseries was inhabited by a species-rich but largely site-specific communities of fungi. Plant pathogens were relatively rare, but, under suitable conditions, these can develop rapidly, spread efficiently through the irrigation system and be a threat to the production of high-quality tree seedlings.


Author(s):  
Adrienne T. Cooper ◽  
D. Yogi Goswami ◽  
Seymour Block

AbstractClean and sterile water is scarce in developing tropical countries and the goal of universal access to water and sanitation has not yet been achieved. Standard water treatment techniques are often too expensive both in capital investment and operation and maintenance for use in developing countries. Since most technology, historically, has been developed in the temperate zone, it may not be the most appropriate for the tropical climate. The solar photochemical process has proven effective against organic chemical pollutants, including agricultural pesticides, which pose a growing threat to water sources in the tropics. Research conducted at the University of Florida has shown this technology to be effective for bacterial decontamination, which is often the primary concern in water supplies of developing countries. The use of solar energy as the primary driver serves to make this technology economically viable. Screening experiments were conducted to investigate the effect of pH and concentration on the simultaneous disinfection and detoxification of water using TiO


2020 ◽  
Vol 12 (17) ◽  
pp. 7017
Author(s):  
Hossain Md Anawar ◽  
Rezaul Chowdhury

Selection of appropriate river water treatment methods is important for the restoration of river ecosystems. An in-depth review of different river water treatment technologies has been carried out in this study. Among the physical-engineering processes, aeration is an effective, sustainable and popular technique which increases microbial activity and degrades organic pollutants. Other engineering techniques (water diversion, mechanical algae removal, hydraulic structures and dredging) are effective as well, but they are cost intensive and detrimental to river ecosystems. Riverbank filtration is a natural, slow and self-sustainable process which does not pose any adverse effects. Chemical treatments are criticised for their short-term solution, high cost and potential for secondary pollution. Ecological engineering-based techniques are preferable due to their high economic, environmental and ecological benefits, their ease of maintenance and the fact that they are free from secondary pollution. Constructed wetlands, microbial dosing, ecological floating beds and biofilms technologies are the most widely applicable ecological techniques, although some variabilities are observed in their performances. Constructed wetlands perform well under low hydraulic and pollutant loads. Sequential constructed wetland floating bed systems can overcome this limitation. Ecological floating beds are highly recommended for their low cost, high effectiveness and optimum plant growth facilities.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1018E-1019
Author(s):  
Steven E. Newman

Scaling from dissolved and suspended solids in irrigation water reduces the efficiency of greenhouse irrigation systems. Water deposits inside pipes reduce water flow and deposits may reduce the flow through irrigation emitters, often clogging them. If not properly maintained, the clogging of emitters requires constant maintenance. This results in considerable labor expense and/or emitter replacement. Scaling inside irrigation system pipes also has the potential to harbor plant pathogens from the resulting biofilms. Oxcide, a novel hypochlorous acid (HOCl) compound, is produced electrochemically by removing sodium and hydroxide from sodium hypochlorite. The elimination of sodium hydroxide from the product creates a nontoxic oxidizer. A system to inject Oxcide into irrigation water at a commercial Colorado greenhouse was installed to maintain irrigation efficiency of emitters and irrigation lines during Winter 2003. The oxidation reduction potential (ORP) was monitored and visual evaluations of irrigation equipment in the Oxcide treated zones compared to those zones not treated with Oxcide was conducted. During January through March, geranium stock plants were irrigated with water that maintained ORP levels at around 600 mV. Visual ratings of the irrigation emitters revealed that the injection of Oxcide in the irrigation water did reduce the level of deposition. Deposition on the main feed lines was so thick that they hindered the complete closure of existing valves. Treatment of the irrigation water Oxcide injection for six months successfully removed of the scale and deposits from the water line.


1993 ◽  
Vol 28 (3) ◽  
pp. 529-548 ◽  
Author(s):  
Hugh Hamilton ◽  
Peter G. Nix ◽  
André Sobolewski

Abstract Constructed wetlands are an attractive alternative to conventional wastewater treatment under certain conditions. This review presents background information on wetland treatment and wetland design, and outlines the potential for wetlands to treat water contaminated with organic compounds including hydrocarbons. The major mechanisms that reduce contaminant concentrations in wetlands are sedimentation, filtration, chemical precipitation, microbial interaction and plant uptake. The presence of bacteria in “biofilms” on the enormous plant and detrital surface area in wetlands is fundamental to their ability to degrade complex organic contaminants. There are few examples in the literature of wetlands being used to control organic chemical pollution. However, the very high level of biochemical activity in the water column and upper sediment layer in wetlands, combined with a high degree of ecological resilience, suggests that wetlands can be an attractive low cost, low energy, low maintenance alternative to conventional treatment methods.


2021 ◽  
Vol 843 (1) ◽  
pp. 012060
Author(s):  
M I Lamskova ◽  
A E Novikov ◽  
S V Borodychev ◽  
M I Filimonov

Abstract Presents results of a study of the uniformity of distribution of irrigation water along the length of the drip lines at its pre-treatment in sand gravel and disc filters (typical) and hydrocyclone installation (experimental version) and the efficiency of water technology in the cultivation of corn. It was found that when using a sand-gravel and disc filter as a water treatment unit on a drip irrigation system, the coefficient of effective irrigation was 0.635, insufficient irrigation - 0.240, and excessive irrigation - 0.125. The use of hydrocyclone installation for water treatment, which combines the processes of capture of dispersed particles by the method of sedimentation in a centrifugal field and the filtration method provides an increase of the coefficient of effective irrigation to 0.715 and reduce the rates of under-and over-irrigation, respectively, to 0.20 and 0.085. Thus, increasing the uniformity of the distribution of irrigation water along the length of the drip lines ensures the regulation of irrigation of agricultural crops. In field experiments on corn cultivation with drip irrigation, an increase in grain yield was achieved by 9% when using an experimental version of the water treatment unit instead of the standard one on the irrigation system.


Sign in / Sign up

Export Citation Format

Share Document