scholarly journals Phenolic Composition, Browning Susceptibility, and Carotenoid Content of Several Apricot Cultivars at Maturity

HortScience ◽  
1997 ◽  
Vol 32 (6) ◽  
pp. 1087-1091 ◽  
Author(s):  
M. Radi ◽  
M. Mahrouz ◽  
A. Jaouad ◽  
M. Tacchini ◽  
S. Aubert ◽  
...  

Phenolic composition and susceptibility to browning were determined for nine apricot (Prunus armeniaca L.) cultivars. Chlorogenic and neochlorogenic acids, (+)-catechin and (-)-epicatechin, and rutin (or quercetin-3-rutinoside) were the major phenolic compounds in apricots. In addition to these compounds, other quercetin-3-glycosides and procyanidins have been detected. Chlorogenic acid content decreased rapidly during enzymatic browning, but the susceptibility to browning seemed to be more strongly correlated with the initial amount of flavan-3-ols (defined as catechin monomers and procyanidins). As chlorogenic acid is certainly the best substrate for polyphenol oxidase, the development of brown pigments depended mainly on the flavan-3-ol content.

HortScience ◽  
2010 ◽  
Vol 45 (8) ◽  
pp. 1150-1154 ◽  
Author(s):  
Daniel Ferreira Holderbaum ◽  
Tomoyuki Kon ◽  
Tsuyoshi Kudo ◽  
Miguel Pedro Guerra

Enzymatic browning is one of the most important reactions that occur in fruits and vegetables, usually resulting in negative effects on color, taste, flavor, and nutritional value. The reaction is a consequence of phenolic compounds' oxidation by polyphenol oxidase (PPO), which triggers the generation of dark pigments. This is particularly relevant for apples, which are rich in polyphenols and highly susceptible to enzymatic browning. The objective of the present work was to quantify enzymatic browning and PPO activity and identify and quantify target polyphenols in apple [Malus ×sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] pulp in the cultivars (cvs.) Aori27, Elstar, Fuji, and Mellow at three fruit developmental stages (FDS). The enzymatic browning was quantified by tristimulus colorimetry; PPO activity was quantified by an enzyme–substrate spectrophotometric assay; phenolic compounds were determined and quantified by reverse-phase high-performance liquid chromatography–ultraviolet/visible–mass spectrometry. Enzymatic browning showed significant difference among cvs. and FDSs and interaction between both factors. PPO activity showed significant difference among cultivars and FDSs. A significant difference was evidenced for polyphenol content among cultivars and FDSs with interaction between both factors. Chlorogenic acid was the major phenolic compound in ‘Aori27’ and ‘Mellow’. In ‘Fuji’, chlorogenic acid and (–)-epicatechin were the major phenolics and in ‘Elstar’ (–)-epicatechin and procyanidin B2 were the major phenolics at different FDSs. The enzymatic browning showed high correlation to polyphenol content in all cultivars and high correlation was observed between browning and PPO activity in ‘Aori27’ and ‘Elstar’. The magnitude of the correlation between browning and polyphenols and PPO activity is genotype-specific. At the commercial harvest, ‘Fuji’ showed the highest polyphenol content and ‘Aori27’ showed the lowest level for enzymatic browning. Chemical names used: 3-(3,4-dihydroxycinnamoyl) quinic acid (chlorogenic acid), (–)-cis-3,3′,4′,5,7-pentahydroxyflavane (epicatechin), and cis,cis″-4,8″-Bi(3,3′,4′,5,7-pentahydroxyflavane) (procyanidin B2).


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4407 ◽  
Author(s):  
M.A. Morosanova ◽  
A.S. Bashkatova ◽  
E.I. Morosanova

In order to develop a simple, reliable and low cost enzymatic method for the determination of phenolic compounds we studied polyphenol oxidase activity of crude eggplant (S. melongena) extract using 13 phenolic compounds. Catechol, caffeic and chlorogenic acids, and L-DOPA have been rapidly oxidized with the formation of colored products. Monophenolic compounds have been oxidized at a much slower speed. Ferulic acid, quercetin, rutin, and dihydroquercetin have been found to inhibit polyphenol oxidase activity of crude eggplant extract. The influence of pH, temperature, crude eggplant extract amount, and 3-methyl-2-benzothiazolinone hydrazone (MBTH) concentration on the oxidation of catechol, caffeic acid, chlorogenic acid, and L-DOPA has been investigated spectrophotometrically. Michaelis constants values decrease by a factor of 2 to 3 in the presence of MBTH. Spectrophotometric (cuvette and microplate variants) and smartphone-assisted procedures for phenolic compounds determination have been proposed. Average saturation values (HSV color model) of the images of the microplate wells have been chosen as the analytical signal for smartphone-assisted procedure. LOD values for catechol, caffeic acid, chlorogenic acid, and L-DOPA equaled 5.1, 6.3, 5.8 and 30.0 µM (cuvette procedure), 12.2, 13.2, 13.2 and 80.4 µM (microplate procedure), and 23.5, 26.4, 20.8 and 120.6 µM (smartphone procedure). All the variants have been successfully applied for fast (4-5 min) and simple TPC determination in plant derived products and L-DOPA determination in model biological fluids. The values found with smartphone procedure are in good agreement with both spectrophotometric procedures values and reference values. Using crude eggplant extract- mediated reactions combined with smartphone camera detection has allowed creating low-cost, reliable and environmentally friendly analytical method for the determination of phenolic compounds.


2021 ◽  
Vol 5 ◽  
Author(s):  
Seda Kayahan ◽  
Didem Saloglu

The objective of this work was to determine the total phenolic compounds and antioxidants in raw and cooked Sakiz and Bayrampasa variety artichokes in parts such as inner bracts, stems, receptacles, and outer bracts. The artichokes were cooked by boiling, microwaving, and baking methods, and total phenolic compounds and antioxidants of cooked artichokes were evaluated. While TPC (total phenolic content), DPPH (2,2-diphenyl-1-picryl-hydrazine), and CUPRAC values for the leaves of raw Bayrampasa artichoke were found to be 686 mg gallic acid equivalent (GAE)/100 g, 478 mg TE/100 g, and 4,875 mg TE/100 g, respectively, TPC, DPPH, and CUPRAC values for stems of Sakiz artichoke were determined to be 1,579 mg GAE/100 g, 1,259 mg TE/100 g, and 3,575 mg TE/100 g. A significant increase in the content of TPC, DPPH, and CUPRAC values was observed for all cooking applications of both artichokes. DPPH and CUPRAC values increased by 11 and 43 times and 17 and 6.7 times after baking of Sakiz and microwave cooking of Bayrampasa, respectively. Chlorogenic acid, cynarine, and cynaroside content of both artichokes had an increment after all cooking applications. Chlorogenic acid content was improved 29 and 58 times after baking of Sakiz and microwave cooking of Bayrampasa, respectively.


Author(s):  
Leman Yılmaz ◽  
Yeşim Elmacı

Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1723 ◽  
Author(s):  
Jiménez-Moreno ◽  
Cimminelli ◽  
Volpe ◽  
Ansó ◽  
Esparza ◽  
...  

Artichoke waste represents a huge amount of discarded material. This study presents the by-products (bracts, exterior leaves, and stalks) of the “Blanca de Tudela” artichoke variety as a potential source of phenolic compounds with promising antioxidant properties. Artichoke residues were subjected to different extraction processes, and the antioxidant capacity and phenolic composition of the extracts were analyzed by spectrophotometric methods and high performance liquid chromatography (HPLC) analyses, respectively. The most abundant polyphenols in artichoke waste were chlorogenic acid, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside. Minor quantities of cynarin, luteolin, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, and naringenin-7-O-glucoside were also found. The antioxidant activity of the obtained extracts determined by ABTS [2, 2’-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)], DPPH (2,2-diphenyl-1-pycrilhydracyl), and FRAP (Ferric Ion Reducing Antioxidant Power) was highly correlated with the total concentration of phenolic compounds. Chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside, the most abundant compounds in 60% methanol extracts, are the components most responsible for the antioxidant activity of the artichoke waste extracts. The extract with the best antioxidant capacity was selected to assay its antioxidant potential on a model intestinal barrier. This action of the hydroxycinnamic acids on intestinal cells (Caco-2) was confirmed. In summary, artichoke waste may be considered a very interesting ingredient for food functionalization and for therapeutic purposes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mindaugas Liaudanskas ◽  
Kristina Zymonė ◽  
Jonas Viškelis ◽  
Almantas Klevinskas ◽  
Valdimaras Janulis

The specific HPLC analytical procedure was developed and validated for the determination of phenolic compounds in pear samples of different popular cultivars “Conference,” “Concordia,” “Grabova,” and “Patten.” HPLC mobile phase consisted of 0.05% (v/v) trifluoroacetic acid in water and 100% (v/v) acetonitrile. The HPLC method was used to identify and confirm the specificity of 8 analytes: chlorogenic acid, rutin, hyperoside, isoquercitrin, isorhamnetin rutinoside, quercitrin, quercitrin malonyl glucoside, and isorhamnetin glucoside. Repeatability % RSD did not exceed 3.87%, and intermediate precision did not exceed 4.63%. The total content of phenolic compounds varied from0.51±0.001 mg/g (cv. “Concordia”) to1.11±0.013 mg/g (cv. “Patten”). Chlorogenic acid was the major component in all the tested pear cultivars. The highest amount of chlorogenic acid (0.69±0.033 mg/g) was found in pear samples of the cultivar “Grabova,” and the highest amount of flavonol compounds (1.11±0.013 mg/g) was found in pear samples of the cultivar “Concordia.”


Sign in / Sign up

Export Citation Format

Share Document