Influence of Cyclic Cold Temperature Stress on Watermelon Seedling Growth, Earliness, Yield, and Quality

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 546d-546
Author(s):  
Ahmet Korkmaz ◽  
Robert J. Dufault

Watermelon seedlings may be repeatedly exposed to temperatures alternating between almost freezing and optimal temperatures for growth during stand establishment in coastal South Carolina. `Carnival' watermelon transplants were exposed to 2 °C for 3, 6, and 9 h, for 1, 3, 6, and 9 days in a walk-in cooler and then to warm temperatures (24 °C) immediately prior to field planting. Our objective was to determine the long term effect of early season cold temperature exposure on seedling growth, earliness, yield and quality by simulating the cold/warm alternations possible in the field. Cold-stressed transplants were field planted after the risk of ambient cold stress was negligible. Exposure to cycling cold temperatures generally did not affect earliness, total productivity and quality, although seedling growth characteristics were reduced in response to the longer cold-stress treatment. Therefore, cold temperature stresses occurring in the field at transplanting have negligible beneficial or detrimental effects on yield potential of `Carnival' watermelon.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 513D-513
Author(s):  
Ahmet Korkmaz ◽  
Robert J. Dufault

Cantaloupe seedlings may be repeatedly exposed in the field soon after transplanting to temperatures alternating between almost freezing and optimal temperatures. In the first year of a 2-year study, `Athena' cantaloupe seedlings were exposed in walk-in coolers to temperatures cycling from 2 °C for 3, 6, and 9 hours daily to 25 °C for the rest of the 24-h period. Cold stress was repeated for 1, 3, 6, and 9 days before field planting. In the second year, transplants were exposed to 2 °C for 3, 6, and 9 hours for 3, 6, and 9 days before field transplanting. The objective of this study was to determine the long-term effect of early season cold temperature exposure on seedling growth, earliness, yield and quality by simulating the cold/warm alternations possible in the field in coolers. Cold-stressed transplants were planted in the field after all risk of ambient cold stress was negligible. In both years, exposure to cycling cold temperatures generally did not effect total productivity and fruit quality, although seedling growth characteristics were reduced in response to longer cold-stress treatments. In the second year, early yield was reduced by exposure to increasing hours of cold stress, but this was not significant in the first year. Therefore, cold temperature stresses occurring in the field at transplanting have negligible effect on yield potential of `Athena' cantaloupe.


1990 ◽  
Vol 115 (4) ◽  
pp. 559-563
Author(s):  
Robert J. Dufault ◽  
Regina R. Melton

Tomato seedlings (Lycopersicon esculentum Mill. `Sunny') were exposed to cyclic cold stress at 2 ± 1C, then to 29 ± 6C in a greenhouse before being transplanted to the field. Cold-stressed seedlings were transplanted when the risk of ambient cold stress was negligible. In the first year of a 2-year study, transplants were exposed to 2C for 3, 6, or 12 hours for 1, 3, or 6 days before field planting. In the second year, transplants were exposed to 2C for 6, 12, or 18 hours for 4, 7, or 10 days before field planting. In the first year, cold stress generally stimulated increases in seedling height, leaf area, and shoot and root dry weights but decreased chlorophyll content. In the second year, all seedling growth characteristics except leaf area and plant height were diminished in response to longer cold-stress treatment. In both years, earliness, total productivity, and quality were unaffected by any stress treatment. Therefore, cold stress occurring before transplanting has a negligible effect on earliness, yield, or quality.


1991 ◽  
Vol 116 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Regina R. Melton ◽  
Robert J. Dufault

`Sunny' tomato (Lycopersicon esculentum Mill.) seedlings were pretransplant nutritionally conditioned (PNC) in 1988 and 1989 with factorial combinations of N from 100 to 300 mg·liter-1 and P from 10 to 70 mg·liter-1. In 1988, all conditioned seedlings were exposed to 12 hours of 2C for eight consecutive nights before transplanting. In 1989, half of the conditioned plants were exposed to a low-temperature treatment of 8 days with 12-hour nights at 2C and 12-hour days in a warm greenhouse (19C/26C, night/day). In both years, as N PNC increased to 200 mg·liter-1, seedling growth increased. Increasing P PNC from 10 to 40 mg·liter-1 increased seedling growth, but only in 1988. In both years, P PNC did not affect yields. Low-temperature exposure in 1989 decreased seedling growth in comparison to those held in a warm greenhouse (19C/26C, day/night). In 1988, first harvest yields were not affected by N PNC; however, in 1989, as N increased to 200 mg·liter-1, early yields increased. In 1988, total yields increased wit h N PNC from 100 to 200 mg·liter-1 and in 1989 with N at 50 to 100 mg·liter-1 with no further increases from 100 to 200 mg·liter-1. Low-temperature exposure had no effect on earliness, yield, or quality. A PNC regime combining at least 200 mg N/liter and up to 10 mg P/liter should be used to nutritionally condition `Sunny' tomato seedlings to enhance yield.


HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1264-1268 ◽  
Author(s):  
Jonathan R. Schultheis ◽  
Robert J. Dufault

Pretransplant nutritional conditioning (PNC) of transplants during greenhouse production may improve recovery from transplanting stress and enhance earliness and yield of watermelon [Citrullus lanatus (Thumb.) Matsum. & Nakai]. Two greenhouse experiments (Expts. 1 and 2) and field experiments in South Carolina and North Carolina (Expt. 3) were conducted to evaluate N and P PNC effects on watermelon seedling growth and their effects on fruit yield and quality. `Queen of Hearts' triploid and `Crimson Sweet' diploid watermelon seedlings were fertilized with N from calcium nitrate at 25, 75, or 225 mg·liter–1 and P from calcium phosphate at 5, 15, or 45 mg·liter–1. In the greenhouse, most variation in the shoot fresh and dry weights, leaf count, leaf area, transplant height, and root dry weight in `Queen of Hearts' and `Crimson Sweet' was attributed to N. Cultivar interacted with N, affecting all seedling growth variables, but not leaf area in Expt. 2. To a lesser extent, in Expt. 1, but not in Expt. 2, P interacted with cultivar, N, or cultivar × N and affected shoot fresh and dry weights, leaf count and leaf area. In the field, transplant shock increased linearly with N, regardless of cultivar or field location. The effect of PNC on plant growth diminished as the growing season progressed. For both cultivars at both locations, N and P PNC did not affect time to first staminate flower, fruit set, fruit width or length, soluble solids concentration, or yield. Vining at Charleston for both cultivars was 2 days earlier when N was at 75 rather than 25 mg·liter–1, without further change with the high N rate. At Clinton, the first pistillate flower was delayed linearly the higher the N rate for `Crimson Sweet'. At Charleston, hollow heart in the `Queen of Hearts' increased nearly 3 times when N PNC rate was tripled (from 75 or 225 mg·liter–1), while N had no effect on hollow heart in `Crimson Sweet'. In contrast, at Clinton, hollow heart in either cultivar was affected by P PNC, not N. PNC with 25N–5P (in mg·liter–1) can be used to reduce seedling growth and produce a more compact plant for easier handling, yet not reduce fruit quality or yield.


Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 182 ◽  
Author(s):  
Merhaba Abla ◽  
Huigai Sun ◽  
Zhuyun Li ◽  
Chunxiang Wei ◽  
Fei Gao ◽  
...  

Astragalus membranaceus is an important medicinal plant widely cultivated in East Asia. MicroRNAs (miRNAs) are endogenous regulatory molecules that play essential roles in plant growth, development, and the response to environmental stresses. Cold is one of the key environmental factors affecting the yield and quality of A. membranaceus, and miRNAs may mediate the gene regulation network under cold stress in A. membranaceus. To identify miRNAs and reveal their functions in cold stress response in A. membranaceus, small RNA sequencing was conducted followed by bioinformatics analysis, and quantitative real time PCR (qRT-PCR) analysis was performed to profile the expression of miRNAs under cold stress. A total of 168 conserved miRNAs belonging to 34 families and 14 putative non-conserved miRNAs were identified. Many miRNA targets were predicted and these targets were involved in diversified regulatory and metabolic pathways. By using qRT-PCR, 27 miRNAs were found to be responsive to cold stress, including 4 cold stress-induced and 17 cold-repressed conserved miRNAs, and 6 cold-induced non-conserved miRNAs. These cold-responsive miRNAs probably mediate the response to cold stress by regulating development, hormone signaling, defense, redox homeostasis, and secondary metabolism in A. membranaceus. These cold-corresponsive miRNAs may be used as the candidate genes in further molecular breeding for improving cold tolerance of A. membranaceus.


Author(s):  
M. A. Khanday ◽  
Fida Hussain ◽  
Khalid Nazir

The development of cold injury takes place in the human subjects by means of crystallization of tissues in the exposed regions at severe cold temperatures. The process together with the evaluation of the passage of fluid discharge from the necrotic regions with respect to various degrees of frostbites has been carried out by using variational finite element technique. The model is based on the Pennes' bio-heat equation and mass diffusion equations together with suitable initial and boundary conditions. The results are analyzed in relation with atmospheric temperatures and other parameters of the tissue medium.


2016 ◽  
Vol 14 (1) ◽  
pp. 107-111 ◽  
Author(s):  
M H Rahman ◽  
M M Alam Patwary ◽  
H Barua ◽  
S Nahar ◽  
Abu Noman Faruq Ahmmed

Yield and quality performances of three jackfruit genotypes were studied at the Agricultural Research Station, Bangladesh Agricultural Research Institute, Pahartali, Chittagong during 2013-2014. Age, growth, maturity period, yield potential and also qualitative characteristics were compared among them.  Based on overall performance with respect to bearing potential, maturity period, fruit and bulb characters, the genotypes AHPah-1 have been found promising for table purpose followed by AHPah-2 and AHPah-3. Minimum days (117) to 1st harvest were observed in AHPah-1. The number of fruits per plant was exceedingly higher (73) in AHPah-1 whereas minimum number (41) was found in AHPah-2. Maximum weight (8.40 kg) per fruit was observed in AHPah-2 and minimum was in AHPah-1(3.40 kg).  The highest single fruit length (37.25cm) was found in AHPah-2 and breadth (27.00cm) was produced by AHPah-3. Maximum number of bulbs (116) was produced in AHPah-1, whereas minimum (63.00) was in AHPah-3. Maximum weight of bulbs per fruit (4.24 kg) was produced in AHPah-2. Individual bulb weight was higher (54.42g) in AHPah -2 whereas, the lowest (16.71) was in AHPah-1. Edible portion was higher (69.27%) in AHPah-1 whereas, the lowest (53.43%) was in AHPah-3. The TSS was the highest (21.00%) in AHPah-1. The highest bulb length and breadth was found in AHPah-3. Highest seeds weight (639g) was produced in AHPah-2. Individual seed weight (8.19 g) was higher in AHPah-2. Therefore, the genotypes can be included in the variety development program after comparing with the already BARI released jackfruit variety.The Agriculturists 2016; 14(1) 107-111


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 169 ◽  
Author(s):  
Anna Dreyer ◽  
Karl-Josef Dietz

Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate.


Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 53-66
Author(s):  
Samsul Rizal ◽  
Julfi Restu Amelia ◽  
Suharyono A S

Sinbiotic drinks have a very acidic taste, so it is necessary to add sucrose solution to get the best taste. This study aims to determine the effect of adding 65% (v/v) sucrose solution to changes in antibacterial activity of green grass jelly synbiotic drinks during storage in cold temperatures. The finished green grass jelly synbiotic product was given two different treatments, namely the product without the addition of sucrose solution and product with the addition of 10% (v/v) of 65% (b/v) sucrose solution. The product was stored for 28 days at a cold temperature of ± 10oC. Observations were carried out every 7 days for antibacterial activity, pH, total acid, and total lactic acid bacteria. Antibacterial activity was evaluated using the agar diffusion method against pathogenic bacteria including Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Eschericia coli. The results showed that the antibacterial activity, pH, and total lactic acid bacteria of green grass jelly synbiotic drinks both without and with the addition of 65% (b/v) sucrose as much as 10% (v/v) reduced during storage at cold temperatures, while total acid increases. There was no significant difference between the antibacterial activity and the characteristics of the green grass jelly synbiotic drink given 65% sucrose solution and without the addition of 65% sucrose solution. Thus the study concluded that the addition of 65% sucrose solution to increase the preference for the product did not significantly affect the change in antibacterial activity of the green grass jelly synbiotic beverage during storage in cold temperatures.


2015 ◽  
Vol 140 (3) ◽  
pp. 214-222 ◽  
Author(s):  
Ren-jun Feng ◽  
Li-li Zhang ◽  
Jing-yi Wang ◽  
Jin-mei Luo ◽  
Ming Peng ◽  
...  

Cold stress is one of the most important environmental factors affecting crop growth and agricultural production. Induced changes of gene expression and metabolism are critical for plants responding and acclimating to cold stress. Banana (Musa sp.) is one of the most important food crops in the tropical and subtropical countries of the world. Banana, which originated from tropical regions, is sensitive to cold, which can result in serious losses in commercial banana production. To investigate the response of the banana to cold stress conditions, changes in protein expression were analyzed using a comparative proteomics approach. ‘Brazil’ banana (Musa acuminata AAA group) is a common banana cultivar in southern China. ‘Brazil’ banana plantlets were exposed to 5 °C for 24 hours and then total crude protein was extracted from treatment and control leaves by phenol extraction, separated with two-dimensional gel electrophoresis, and subsequently identified by mass spectrometry (MS). Out of the more than 400 protein spots reproducibly detected, only 41 protein spots exhibited a change in intensity by at least 2-fold, with 26 proteins increasing and 15 proteins decreasing expression. Of these, 28 differentially expressed proteins were identified by MS. The identified proteins, including well-known and novel cold-responsive proteins, are involved in several cellular processes, including antioxidation and antipathogen, photosynthesis, chaperones, protein synthesis, signal transduction, energy metabolism, and other cellular functions. Proteins related to antioxidation, pathogen resistance, molecular chaperones, and energy metabolism were up-regulated, and proteins related to ethylene synthesis, protein synthesis, and epigenetic modification were down-regulated in response to cold temperature treatment. The banana plantlets incubated at cold temperatures demonstrated major changes in increased reactive oxygen species (ROS) scavenging, defense against diseases, and energy supply. Increased antioxidation capability in banana was also discovered in plantain, which has greater cold tolerance than banana in response to cold stress conditions. Therefore, we hypothesized that an increased antioxidation ability could be a common characteristic of banana and plantain in response to cold stress conditions. These findings may provide a better understanding of the physiological processes of banana in response to cold stress conditions.


Sign in / Sign up

Export Citation Format

Share Document