scholarly journals Environmental Stressors That May Influence Internal Heat Necrosis in Potato Production in Northeast Florida

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 748D-748
Author(s):  
Christine M. Worthington* ◽  
Chad M. Hutchinson

`Atlantic' potatoes (Solanum tuberosum L.) are grown on approximately 8100 hectares with seepage irrigation in Northeast Florida's Tri-County Agricultural Area (St. Johns, Putnam, and Flagler counties). `Atlantic' is preferred for its chipping quality, high specific gravity and yield, but is susceptible to internal heat necrosis (IHN), a physiologic disorder that affects potato tuber quality. The relationships of environmental stressors (growing degree days, GDD and rainfall) to IHN were evaluated on two fields (fields 3 and 4) on a local producer's farm. IHN reduced marketable tuber yield by 100% in the 1995 and 2003 seasons, but not in 2001 and 2002 seasons. From 3 to 6 weeks after planting (WAP), GDD for 1995, 2001, 2002, and 2003 were 470, 325, 386, and 628 (45° F base), respectively. This is the only 4 week period during the 14 week season that GDD accumulation by week was different among treatments. Average rainfalls (cm) for the same periods were 1.60, 1.12, 2.23 and 7.91, respectively. Both warmer/dryer and warmer/wetter early season conditions occurred during seasons with higher rates of IHN. Although circumstantial, higher accumulated heat units and water stress within the first 6 weeks of the growing season resulted in higher percentages of tubers with IHN. These relationships should be evaluated further with other growers.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 529C-529
Author(s):  
S.J. Locascio ◽  
A.G. Smajstsrla ◽  
D.H. Hensel ◽  
D.P. Weigartner

Growth and production uniformity of potato (Solanum tuberosum L.) as influenced by conventional seepage irrigation and by subsurface drip irrigation was evaluated in field studies during two seasons in plots 16 rows (18.3 m) wide and 183 m long. Seepage irrigation water was supplied through ditches located on each side of each plot. Drip irrigation water was distributed through buried tubes placed under the beds 6.1 m apart extending the length of the rows. Water application throughout the plots was accomplished more rapidly with the subsurface drip system and water use during the two seasons was 33% less than with the conventional seepage system. Tuber yield during the first season was similar with the two irrigation systems. During the second season, plant growth, tuber development, and tuber yield were sampled on alternate rows beginning on each outside bed, at each end of each plot, and in the middle of the plots. Irrigation method and bed location among the 16 beds had little influence of potato growth and development. With water flow from north to south, plant growth, and tuber yield were significantly higher from potatoes growing at the north end, lowest in the plot center, and intermediate from potatoes growing at the south end. These data indicate that potato production with the two irrigation systems was similar.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


2020 ◽  
Vol 5 (1) ◽  
pp. 63-74
Author(s):  
Lemma Tessema ◽  
Wassu Mohammed ◽  
Tesfaye Abebe

AbstractA field experiment was conducted in the central highlands of Ethiopia to evaluate the performance of potato varieties for tuber yield and to identify a superior variety in tuber yield and yield components. The experiment was laid out in a randomized complete block design with three replications at two locations in the central highlands of Ethiopia during the 2017 main cropping season. The results of analysis of variance (ANOVA) showed the presence of highly significant (P<0.01) differences among varieties over all traits studied. The mean squares for location were also significant in indicating the influence of environments on the traits of the studied varieties. However, the interaction between variety and environment had no significant effect on the performances of the potato varieties to attain 50% flowering, specific gravity and dry matter content indicating a similar performance of these traits across all locations. The variety Belete produced the maximum total tuber yield of 32.8 t ha -1 and marketable tuber yield of 29.1 t ha-1. Conversely, farmers` variety Nech Abeba produced the minimum total tuber yield of 13.8 t ha-1 and marketable tuber yield of 8.4 t ha-1. For most tuber quality traits, viz., tuber specific gravity, dry matter content, starch percentage and total starch yield, varieties Belete and Menagesha were the maximum and minimum producers, respectively. Thus, it could be concluded that varietal and environmental variations as well as their interaction had considerable influence on tuber yield and the potato’s attributes.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2015 ◽  
Vol 33 (2) ◽  
pp. 165-173 ◽  
Author(s):  
R.S.O. Lima ◽  
E.C.R. Machado ◽  
A.P.P. Silva ◽  
B.S. Marques ◽  
M.F. Gonçalves ◽  
...  

This work was carried out with the objective of elaborating mathematical models to predict growth and development of purple nutsedge (Cyperus rotundus) based on days or accumulated thermal units (growing degree days). Thus, two independent trials were developed, the first with a decreasing photoperiod (March to July) and the second with an increasing photoperiod (August to November). In each trial, ten assessments of plant growth and development were performed, quantifying total dry matter and the species phenology. After that, phenology was fit to first degree equations, considering individual trials or their grouping. In the same way, the total dry matter was fit to logistic-type models. In all regressions four temporal scales possibilities were assessed for the x axis: accumulated days or growing degree days (GDD) with base temperatures (Tb) of 10, 12 and 15 oC. For both photoperiod conditions, growth and development of purple nutsedge were adequately fit to prediction mathematical models based on accumulated thermal units, highlighting Tb = 12 oC. Considering GDD calculated with Tb = 12 oC, purple nutsedge phenology may be predicted by y = 0.113x, while species growth may be predicted by y = 37.678/(1+(x/509.353)-7.047).


1976 ◽  
Vol 56 (4) ◽  
pp. 901-905 ◽  
Author(s):  
D. G. DORRELL

The effect of seeding date on the chlorogenic acid content of sunflower seed flour was determined by seeding the cultivars Krasnodarets and Peredovik at seven dates, starting on 14 May, over 3 yr. Sequential plantings were made at increments of approximately 70 growing degree days (base = 5.6 C). Plants were harvested at normal field maturity. The time and rate of deposition of chlorogenic acid was determined by harvesting plants at 7-day intervals from 21 to 49 days after flowering. The seeds were dehulled and defatted before determining the chlorogenic acid content of the flour. Chlorogenic acid content declined steadily from an average of 4.22% for the first seeding to 3.30% for the last seeding. About one-half of the total chlorogenic acid was present 21 days after flowering. Deposition continued rapidly for the next 14 days then the level began to stabilize. Delay in seeding tended to shorten the period of vegetative growth and shift the deposition of chlorogenic acid to a cooler portion of the growing season. It is suggested that a combination of these factors caused the reduction in chlorogenic acid content of sunflower flour.


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


Sign in / Sign up

Export Citation Format

Share Document