scholarly journals (300) Safety and Productivity of Cool-season Salad Greens Grown in Soils Amended with Composts

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1023C-1023
Author(s):  
Lurline Marsh ◽  
Corrie Cotton ◽  
Elizabeth Philip ◽  
Salina Parveen ◽  
Fawzy Hashem

Excessive amounts of poultry waste on the Delmarva Peninsula of the United States, coupled with the availability of yard waste, may be potential inexpensive nutrient sources for growing vegetables. However, these composts may contain unsafe microorganisms. This study, therefore, was conducted to determine the presence and persistence of biological agents in soil treated with poultry compost and yard waste. Tatsoi [Brassica rapa (Narinosa Group)] and spinach (Spinacia oleracea L. `F415' and `Seven R') were planted under a high tunnel to extend their fall growing season. Samples of soil–compost mixture and original poultry compost were collected once a month for 4 months. Escherichia coli O157:H7 in the samples was determined by enrichment and immunomagnetic separation, and was not detected in any of the soil-mixtures. However, this bacterium was detected in the original poultry compost in very low numbers. Plant leaves were harvested periodically. Results showed that tatsoi plants significantly produced larger leaves and higher fresh weight in soils amended with organic compost with the tendency for yield to increase with the increase in harvest date. Generally, the organic amendments did not influence size and total fresh weight of spinach leaves, although earlier harvests tended to produce significantly larger leaves and higher fresh weight.

2020 ◽  
Vol 100 (5) ◽  
pp. 528-536
Author(s):  
David A. Baumbauer ◽  
Macdonald H. Burgess

Moveable high tunnels offer the possibility of increasing the number of crops harvested from a given piece of ground in northern latitudes where there is a short growing season. In an effort to expand crop scheduling options, three leafy greens and three root vegetables were grown in the spring in a movable high tunnel, and in the fall were sown outside and the tunnel was moved over the crops in late September. The effects of seeding date and addition of row cover were further explored on fresh weight and days to harvest. Using row cover within the high tunnel increased growing degree hours (GDH) by an average of 29% in the spring and 17% in the fall over a high tunnel without row cover. Soil degree hours (SDH) in the high tunnel with row cover increased an average of 9% in the spring and 12% in the fall over the high tunnel without row cover. The addition of row cover increased yield of leafy greens and turnip by an average of 35% in spring 2018 when the outside air temperature was considerably below average. Early-seeded fall leafy greens out-yielded late-seeded by 52% due to the ability to make a second harvest. Using row cover within the high tunnel increased GDH and SDH during both spring and fall seasons and increased the yield of cool season vegetables when outside air temperatures were considerably below average.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 269E-269
Author(s):  
Gloria McIntosh ◽  
Gerald Klingaman

Spunbonded polyester or polystyrene row covers were used as additional cold protection for spinach (Spinacia oleracea), kale (Brassica oleracea), pak choi (Brassica rapa) and P-types of lettuce (Lactuca savita) grown in ground beds under unheated polyethylene tunnels during the fall and winter of 1991 and 1992 in climatic zone 6. Temperatures inside poly tunnels averaged 2.4C warmer than outside. Average temperatures were 1.9C warmer than control under polystyrene and 1.5C warmer under spunbonded polyester. Average hourly temperatures showed both row covers offered significantly more cold protection than the greenhouse covering alone; but the two row covers offered similar protection from the cold. Row covers did not result in fresh weight differences in most of the species tested, except kale which had greater fresh weight in control. It may be concluded that during a similar mild winter, these cool season vegetables could be grown under unheated polyethylene tunnels with no additional protection necessary. When temperatures are lower, row covers could provide the protection required to produce these crops.


2010 ◽  
Vol 20 (3) ◽  
pp. 639-645 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Edward E. Carey ◽  
M.B. Kirkham

A survey was conducted of 81 growers managing 185 high tunnels in Missouri, Kansas, Nebraska, and Iowa to collect information about their high tunnel management practices. The survey was administered from 2005 to 2007 using internet-based and written forms. The average respondent had 4 years of high tunnel experience. The oldest tunnel still in use was 15 years old. Twenty-five percent of respondents grew crops in their high tunnels year-round. Tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), cucumber (Cucumis sativus), pepper (Capsicum spp.), leafy greens, and flowers were the most common crops. Organic soil amendments were used exclusively by 35% of growers, and in combination with conventional fertilizers by an additional 50% of growers. The summary of management practices is of interest to growers and the industries and university research and extension scientists who serve them. Growers typically reported satisfaction with their high tunnels. Growers with more than one high tunnel had often added tunnels following the success of crop production in an initial tunnel. Labor for crop maintenance was the main limiting factor reported by growers as preventing expanded high tunnel production.


2016 ◽  
Vol 26 (4) ◽  
pp. 466-473 ◽  
Author(s):  
Samuel E. Wortman ◽  
Michael S. Douglass ◽  
Jeffrey D. Kindhart

Demand for local food, including strawberries (Fragaria ×ananassa), is increasing throughout the United States. Strawberry production in the midwestern United States can be challenging due to the relatively short growing season and pests. However, vertical, hydroponic, high tunnel production systems could extend the growing season, minimize pest incidence, and maximize strawberry yield and profitability. The objectives of this study were to 1) identify the best cultivars and growing media for vertical, hydroponic, high tunnel production of strawberries in the midwestern United States and to 2) assess potential strategies for replacing synthetic fertilizer with organic nutrient sources in hydroponic strawberry production. To accomplish these objectives, three experiments were conducted across 2 years and two locations in Illinois to compare 11 strawberry cultivars, three soilless media mixtures, and three nutrient sources. Strawberry yield was greatest when grown in perlite mixed with coco coir or vermiculite and fertilized with a synthetic nutrient source. Yield was reduced by up to 15% when fertilized with a bio-based, liquid nutrient source and vermicompost mixed with soilless media. Strawberry yield among cultivars varied by year and location, but Florida Radiance, Monterey, Evie 2, Portola, and Seascape were among the highest-yielding cultivars in at least one site-year. Results contribute to the development of best management practices for vertical, hydroponic, high tunnel strawberry production in the midwestern United States, but further research is needed to understand nutrient dynamics and crop physiological response among levels within vertical, hydroponic towers.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 480e-480
Author(s):  
Nancy H. Furness ◽  
Mahesh K. Upadhyaya ◽  
Douglas P. Ormrod

Relative sensitivity of selected vegetable and weed seedlings to ultraviolet-B (UV-B) radiation (280–320 nm) was investigated. Seedlings were grown for 4 weeks in a greenhouse, in chambers equipped with UV-B-emitting fluorescent tubes and Mylar (control) and cellulose acetate (UV-B) filters. UV-B radiation reduced seedling height, leaf area, and leaf fresh weight in tomato (Lycopersicon esculentum `Cour Di Bue'), broccoli (Brassica oleracea var. Italica `Purple Sprouting'), cabbage (Brassica oleracea var. Capitata `Red Drumhead'), and cucumber (Cucumis sativus `Straight Eight'), leaf area and leaf fresh weight in beet (Beta vulgaris `Cylindra' and `Early Wonder'), seedling height and leaf area in spinach (Spinacia oleracea `Long Standing Bloomsdale'), lettuce (Lactuca sativa ``Red Salad Bowl Everest') and `Savoy' cabbage, and seedling height in `Chinese Tip Top' cabbage and lettuce (`Saladin'). `Winterton' cabbage was not affected. UV-B radiation decreased leaf area and leaf fresh weight in common chickweed (Stellaria media) and corn spurry (Spergula arvensis) and seedling height in green foxtail (Setaria viridis) and redroot pigweed (Amaranthus retroflexus). Tillering was stimulated in response to UV-B in green foxtail. There was no effect of UV-B on lady's-thumb (Polygonum persicaria) growth. Leaf number was not affected by exposure to UV-B in any species. The differential morphological sensitivity of vegetable and weed seedlings may result in altered competitive relationships under enhanced UV-B levels expected with the depletion of the earth's ozone layer.


2018 ◽  
Vol 64 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Andrew Scott ◽  
Yuan-Ching Tien ◽  
Craig F. Drury ◽  
W. Daniel Reynolds ◽  
Edward Topp

The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1901
Author(s):  
Ugele Majaule ◽  
Oagile Dikinya ◽  
Bruno Glaser

Biochar can influence bioavailability of micronutrients and crop yields in sewage sludge-treated soils, but the mechanisms of its effects remain poorly understood. Therefore, this field experiment was conducted on a Luvisol and Cambisol to investigate the bioavailability and uptake of some micronutrients and spinach (Spinacia oleracea L.) yields grown in soil amended with biochar and sewage sludge. Ten treatments arranged in randomized complete block design with three levels of biochar (0, 2.5, 5 t/ha) and sewage sludge (0, 6, 12 t/ha) and combinations thereof were applied. High rate of sole sewage sludge, and its combination with biochar significantly (p < 0.05) increased yield on the Luvisol. On the Cambisol, only marginal yield increase resulted from high rates of sole organic amendments and chemical fertilizer, while co-applications decreased yields. Co-amendments generally increased bioavailability of micronutrients relative to sole amendments in the order Fe > Cu = Zn, with greater increase on the Cambisol, but uptake of micronutrients decreased with co-application rates of amendments. Contents of micronutrients in plant leaves were within the normal range, except for a combination of highest dosage of co-amendments on the Cambisol (Fe; 560 mg/kg), which resulted in leaf necrosis and 7% yield depression. The results showed greater yield response of spinach to co-application of amendments on the Luvisol.


2015 ◽  
Vol 96 (11) ◽  
pp. 1879-1894 ◽  
Author(s):  
Carl J. Schreck ◽  
Stephen Bennett ◽  
Jason M. Cordeira ◽  
Jake Crouch ◽  
Jenny Dissen ◽  
...  

Abstract Day-to-day volatility in natural gas markets is driven largely by variability in heating demand, which is in turn dominated by cool-season temperature anomalies over the northeastern quadrant of the United States (“Midwest–East”). Energy traders rely on temperature forecasts at horizons of 2–4 weeks to anticipate those fluctuations in demand. Forecasts from dynamical models are widely available, so the markets react quickly to changes in the model predictions. Traders often work with meteorologists who leverage teleconnections from the tropics and the Arctic to improve upon the model forecasts. This study demonstrates how natural gas prices react to Midwest–East temperatures using the anomalous winters of 2011/12 and 2013/14. These examples also illustrate how energy meteorologists use teleconnections from the Arctic and the tropics to forecast heating demand. Winter 2011/12 was exceptionally warm, consistent with the positive Arctic Oscillation (AO). March 2012 was a fitting exclamation point on the winter as it featured the largest warm anomaly for the United States above the twentieth-century climatology of any month since 1895. The resulting lack of heating demand led to record surpluses of natural gas storage and spurred prices downward to an 11-yr low in April 2012. In sharp contrast, winter 2013/14 was unusually cold. An anomalous Alaskan ridge led to cold air being transported from Siberia into the United States, despite the AO generally being positive. The ensuing swell in heating demand exhausted the surplus natural gas inventory, and prices rose to their highest levels since the beginning of the global recession in 2008.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Lindsey J. du Toit ◽  
Mike L. Derie ◽  
Pablo Hernandez-Perez

There are no previous reports of Verticillium wilt in fresh and processing spinach (Spinacia oleracea) crops in the United States. In 2002, a hybrid spinach seed crop in the Pacific Northwest developed late-season wilt symptoms. Assays of the harvested seed and stock seed of the male and female parents revealed 59.5, 44.0, and 1.5%, respectively, were infected with Verticillium dahliae. Assays of 13 stock or commercial seed lots grown in 2002 and 62 commercial lots harvested in 2003 in Denmark, Holland, New Zealand, and the United States revealed the prevalence of Verticillium spp. in commercial spinach seed. Sixty-eight lots (89%) were infected with Verticillium spp. at incidences ranging from 0.3 to 84.8%. Five spinach seed isolates of V. dahliae were pathogenic on each of three spinach cultivars by root-dip inoculation. V. dahliae was detected on 26.4% of the seed from 7 of 11 inoculated plants but on none of the seed from 6 control plants, demonstrating systemic movement of V. dahliae. Seed-to-seed transmission was also demonstrated by planting naturally infected seed lots. This is the first report of Verticillium wilt of spinach in the primary region of spinach seed production in the United States.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
J. Mabry McCray ◽  
Shangning Ji ◽  
Leslie E. Baucum

Organic amendments have been shown to increase sugarcane yield on sand soils in Florida. These soils have very low water and nutrient-holding capacities because of the low content of organic matter, silt, and clay. Because of high costs associated with broadcast application, this field study was conducted to determine sugarcane yield response to furrow application of two organic amendments on sand soils. One experiment compared broadcast application (226 m3 ha−1) of mill mud and yard waste compost, furrow application (14, 28, and 56 m3 ha−1) of these materials, and no amendment. Another experiment compared furrow applications (28 and 56 m3 ha−1) of mill mud and yard waste compost with no amendment. There were significant yield (t sucrose ha−1) responses to broadcast and furrow-applied mill mud but responses to furrow applications were not consistent across sites. There were no significant yield responses to yard waste compost suggesting that higher rates or repeated applications of this amendment will be required to achieve results comparable to mill mud. Results also suggest that enhancing water and nutrient availability in the entire volume of the root zone with broadcast incorporation of organic amendments is the more effective approach for low organic matter sands.


Sign in / Sign up

Export Citation Format

Share Document