scholarly journals Hypersensitivity of Ranunculus asiaticus to Salinity and Alkaline pH in Irrigation Water in Sand Cultures

HortScience ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Luis A. Valdez-Aguilar ◽  
Catherine M. Grieve ◽  
James Poss ◽  
Michael A. Mellano

Ranunculus, grown as a field crop in southern and central coastal California, is highly valued in the cut flower and tuberous root markets. However, concerns regarding the sustainability of ranunculus cultivation have arisen when the plantations are irrigated with waters of marginal quality because the viability of the tuberous roots may be compromised. A study was initiated to evaluate the effect of saline irrigation waters, with and without pH control, on the growth of plants and tuberous roots of ranunculus. Treatments consisted of four irrigation water solutions with increasing concentration of Ca2+, Mg2+, Na+, SO42−, and Cl− to meet an electrical conductivity (EC) of 2, 3, 4, and 6 dS·m−1 and pH 6.4. The 3, 4, and 6 dS·m−1 solutions were replicated with uncontrolled pH, which averaged 7.8 over the trial. Ranunculus ‘Yellow ASD’ and ‘Pink CTD’ seedlings were transplanted into greenhouse sand tanks and irrigated twice daily with treatment solutions. Shoot dry weight of plants irrigated with 2 dS·m−1 solutions was 7.20 g and 6.66 g in ‘Yellow ASD’ and ‘Pink CTD’, respectively; however, increasing EC from 2 to 3 dS·m−1 induced an 83% and 78% decrease, respectively. Tuberous root fresh weight of control plants, 7.45 g and 8.42 g for ‘Yellow ASD’ and ‘Pink CDT’, respectively, was decreased by 82% and 89% when EC was 6 dS·m−1. High pH of irrigation water caused an additional decrease in shoot dry weight and tuberous root weight. In control plants, 83% and 76% of tuberous roots of ‘Yellow ASD’ and ‘Pink CTD’, respectively, that were transplanted in the following season produced new shoots; however, tuberous roots sprouting percentage from plants irrigated with EC 4 dS·m−1 water decreased to 42.9% and 58.3% and to 11.1% and 45.0% with EC 6 dS·m−1. The hypersensitivity of ranunculus to salinity was associated with a significant decrease in Ca2+ and K+ tissue concentration. In ‘Yellow ASD’, Ca2+ decreased from 202 mmol·kg−1 in control plants to 130 mmol·kg−1 in plants irrigated with 3 dS·m−1 solutions and pH 6.4. In ‘Pink CTD’, the decrease was from 198 mmol·kg−1 to 166 mmol·kg−1. Potassium was similarly affected. Compared with control plants (405 mmol·kg−1), shoot Na+ concentration was increased by 101% in ‘Yellow ASD’ and by 125% in ‘Pink CTD’ when irrigated with 6 dS·m−1 water. Salt sensitivity of ranunculus, as determined by growth of the flowering stems and viability of the tuberous roots, was increased by irrigation with alkaline waters, which was associated with additional increases in Na+ and Cl– tissue concentration and decreased iron accumulation. Hypersensitivity to salinity makes ranunculus crop a poor candidate for water reuse systems; however, further research is warranted to elucidate the possibility of enhancing its tolerance to salinity by supplemental Ca2+ and K+ and acidification of irrigation water.

HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1888-1891 ◽  
Author(s):  
M. Kate Lee ◽  
Marc W. van Iersel

As a result of the decreasing availability of high-quality irrigation water, salinity tolerance of greenhouse crops is of increasing importance. Saline irrigation water can have many negative effects on plants, but also has the potential to act as a growth regulator because of its ability to reduce plant height. To determine the effects of NaCl in the irrigation water on the growth, physiology, and nutrient uptake of chrysanthemums (Chrysanthemum ×morifolium Ramat.), plants were watered with solutions with different NaCl concentrations (0, 1, 3, 6, or 9 g·L−1). Plants receiving 9 g·L−1 NaCl had a 76% reduction in shoot dry weight, a 90% reduction in stomatal conductance (g S), and a 4-day delay in flowering compared with control plants. Chrysanthemums receiving 1 g·L−1 NaCl had a 4-cm reduction in height with only a small reduction in shoot dry weight. Stomatal conductance and transpiration were reduced by more than 60% by NaCl concentrations of 1 g·L−1 as compared with control plants. The combination of a small reduction in dry weight and a large decrease in transpiration resulted in increased water use efficiency when plants received 1 g·L−1 NaCl. Concentrations of 3 g·L−1 NaCl or higher resulted in poor-quality plants either as a result of wilting of the leaves (3 g·L−1) or severely stunted plants (6 and 9 g·L−1). Our findings indicate that chrysanthemums can be grown successfully with 1 g·L−1 NaCl in the irrigation water without negative impacts on plant quality. This has important implications for the greenhouse industry as the availability of nonsaline water decreases. Saline water may be more readily available and can have the added benefit of reduced plant height, which is an important quality characteristic for floriculture crops.


2019 ◽  
Vol 29 (3) ◽  
pp. 367-373
Author(s):  
Yuxiang Wang ◽  
Liqin Li ◽  
Youping Sun ◽  
Xin Dai

Spirea (Spiraea sp.) plants are commonly used in landscapes in Utah and the intermountain western United States. The relative salt tolerance of seven japanese spirea (Spiraea japonica) cultivars (Galen, Minspi, NCSX1, NCSX2, SMNSJMFP, Tracy, and Yan) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution with an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions with an EC of 3.0 or 6.0 dS·m−1 once per week for 8 weeks. At 8 weeks after the initiation of treatment, all japanese spirea cultivars irrigated with saline solution with an EC of 3.0 dS·m−1 still exhibited good or excellent visual quality, with all plants having visual scores of 4 or 5 (0 = dead, 1 = severe foliar salt damage, 2 = moderate foliar salt damage, 3 = slight foliar salt damage, 4 = minimal foliar salt damage, 5 = excellent), except for Tracy and Yan, with only 29% and 64%, respectively, of plants with visual scores less than 3. When irrigated with saline solution with an EC of 6.0 dS·m−1, both ‘Tracy’ and ‘Yan’ plants died, and 75% of ‘NCSX2’ plants died. ‘Minspi’ showed severe foliar salt damage, with 32% of plants having a visual score of 1; 25% of plants died. ‘Galen’ and ‘NCSX1’ had slight-to-moderate foliar salt damage, with 25% and 21%, respectively, of plants with visual scores of 2 or less. However, 64% of ‘SMNSJMFP’ plants had good or excellent visual quality, with visual scores more than 4. Saline irrigation water with an EC of 3.0 dS·m−1 decreased the shoot dry weight of ‘Galen’, ‘Minspi’, ‘SMNSJMFP’, and ‘Yan’ by 27%, 22%, 28%, and 35%, respectively, compared with that of the control. All japanese spirea cultivars had 35% to 56% lower shoot dry weight than the control when they were irrigated with saline irrigation water with an EC of 6.0 dS·m−1. The japanese spirea were moderately sensitive to the salinity levels in this experiment. ‘Galen’ and ‘SMNSJMFP’ japanese spirea exhibited less foliar salt damage and reductions in shoot dry weight and were relatively more tolerant to the increased salinity levels tested in this study than the remaining five cultivars (Minspi, NCSX1, NCSX2, Tracy, and Yan).


2018 ◽  
Vol 7 (1) ◽  
pp. 137 ◽  
Author(s):  
Masaru Sakamoto ◽  
Takahiro Suzuki

Hydroponics is an effective means for promoting plant growth as it facilitates water and nutrient uptake by plant roots. For increasing the production of sweetpotato (Ipomoea batatas), we developed the new hydroponic cultivation system in which tuberous roots were grown in solid media in the pots whereas fibrous roots were grown in the nutrient solution. Using this method, the effect of pot volume (1.6, 3.0, and 4.5 L) on the growth of sweetpotato was investigated. When plants were grown in small-sized pots (1.6 L), the fresh weight of the top and that of tuberous roots were decreased compared with plants grown in 3.0 L and 4.5 L pots. No clear difference was observed between the top and the tuberous roots in terms of the dry weight ratio, regardless of the pot size. The number of tuberous roots per plant and the maximum tuberous root weight were not influenced by the pot size either. However, the number of tuberous roots weighing more than 100 g was decreased in plants grown in small pots. Some of the tuberous roots grown in this hydroponic system contained a non-hypertrophic parts with severely lignified metaxylems. These results suggest that the environment surrounding the tuberous root influenced by the pot volume may be important for root enlargement in this hydroponic system.


2019 ◽  
Vol 46 (No. 2) ◽  
pp. 98-106 ◽  
Author(s):  
Filippos Bantis ◽  
Kalliopi Radoglou

The effect of light-emitting diodes (LED) with broad radiation spectra on developmental, physiological, and phytochemical characteristics of Greek sage (Salvia fruticosa L.) seedlings was assessed. Fluorescent (FL – control) tubes and four LED lights [AP67 (moderate blue, red and far-red), L20AP67 (moderate blue, red and far-red, high green), AP673L (moderate blue, high red) and NS1 (high blue and green, low red, high red : far-red, 1% ultraviolet)] were used in a growth chamber. Seedlings grown under FL, L20AP67 and AP673L exhibited the best morphological and developmental characteristics. FL led to inferior root biomass formation compared to all LEDs. AP67 promoted greater root-to-shoot dry weight ratio and dry-to-fresh overground and root weight ratios, but induced the least morphological and developmental characteristics. NS1 performed well regarding the root biomass production. Total phenolic content and the root growth capacity were not significantly affected. The present study demonstrates that L20AP67 and AP673L LEDs performed equally to FL light regarding the developmental characteristics. AP67 and NS1 may have the potential to be used for compact seedling production.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ogalo Baka Oluoch ◽  
Esther Mwende Muindi ◽  
Elisha Otieno Gogo

Salinity is a major biotic factor that negatively affects growth and yield of crops. Over 90% of the coastal region of Kenya is arid and semi-arid, most farmers in the region use borehole irrigation water which is saline. Amaranthus spp. is one of the main vegetables grown in coastal region. There is limited information regarding the effect of salinity on amaranthus production. The study sought to determine the effect of saline irrigation water on amaranthus growth in coastal Kenya. Two experiments were set up, one at Mivumoni Secondary School farm in Kwale County and another at Pwani University farm in Kilifi County from beginning of September 2019 to the end of January, 2020. The experiments were laid out in a randomized complete block design and replicated three times. The six treatments tested were: fresh water alone, 75% saline water alone, 100% saline water alone, fresh water + DAP, 75% saline water + DAP, 100% saline water + DAP. Crop growth data collected were: emergence rate, plant height, leaf number, leaf area, chlorophyll content, stem thickness, root density, root weight, root volume and total plant biomass. Data obtained were subjected to analysis of variance using SAS statistical package (SAS, Version 10) and treatment effects were tested for significance using F-test. Significant means at F-test was ranked using Tukey’s test at 5% level of significance. Amaranthus seeds sown in fresh water had higher emergence rate compared to seeds sown in saline water. Salinity regardless of concentration used and application of DAP, resulted in decrease in height, leaf number, leaf area, stem tickness, chlorophyll content, root length, root weight, root volume and total biomass. The study demonstrates that saline irrigation water in coastal Kenya has a negative effect on Amaranthus growth.


2016 ◽  
Vol 50 (6) ◽  
Author(s):  
Parvaze A. Sofi ◽  
Iram Saba

The present study was undertaken to assess the response of common bean under drought in respect of root traits and biomass partitioning in fifteen common bean genotypes. The basal root whorl number and the number of basal roots was highest in case of WB-185 and lowest in case of SR-1, whereas, the basal root growth angle was highest in case of WB-258 and lowest in case of WB-249. Rooting depth measured as the length of longest root harvested was highest in case of WB-6 (66.2) while as lowest value was recorded for WB-112 (20.4). Dry root weight was highest in case of WB-216 (0.45) and lowest value was recorded for WB-341 (0.22). Similarly leaf biomass was highest in case of WB-6 (0.58) followed by WB-216 (0.58) and the lowest value recorded for WB-1186 (0.12). Shoot dry weight was highest for WB-6 (0.55) followed by WB-216 (0.44) and the lowest value recorded for WB-1186 (0.118). Pod dry weight was highest for WB-489 (2.28) followed by WB-216 (2.19) and the lowest value recorded for WB-83 (0.68).489. Root biomass proportion was highest for WB-195 (18.34) and lowest for WB-489 (10.00). Similarly leaf biomass to total biomass was highest in case of WB-83 (23.19) whereas lowest value was recorded for WB-1186 (7.60). Highest stem biomass proportion was recorded for Arka Anoop (19.19) and the lowest value was recorded for WB-1186 (7.591). Biomass allocation to pods was highest in case of WB-489 (69.92) followed by WB-1186 (68.69) whereas lowest value was recorded for WB-83 (45.40).


2014 ◽  
Vol 76 ◽  
pp. 197-202
Author(s):  
S.N. Nichols ◽  
J.R. Crush

Abstract Strategies to reduce the economic and environmental costs of phosphate (P) fertiliser use in mixed pastures through plant breeding are focussed on inefficiencies in the legume component. One approach is breeding within white clover for root systems with improved P acquisition properties. Selection for root length per unit root weight (specific root length, SRL) showed that higher SRL plants could retain more biomass in the above ground fraction with decreasing soil P, whereas plants with lower SRL diverted more biomass to roots. Back cross 1 (BC1) generation interspecific hybrids between white clover and a wild relative, Trifolium uniflorum L., may possess additional root traits influencing P acquisition. In glasshouse experiments, some T. repens × T. uniflorum hybrids, back-crossed to white clover, also exhibited higher shoot dry weight than their white clover cultivar parents at low nutrient supply levels and low to intermediate soil Olsen P. This, combined with low internal P concentrations, suggests some BC1 hybrids may be more tolerant of low soil P than white clover. Differences in both P acquisition ability and internal P use efficiency may contribute to the observed yield differences. There are good prospects for delivery of new-generation clover cultivars with improved phosphate use efficiency to New Zealand farmers. Keywords: phosphorus, white clover, Trifolium uniflorum, interspecific


1996 ◽  
Vol 14 (3) ◽  
pp. 105-110 ◽  
Author(s):  
Edward F. Gilman ◽  
Thomas H. Yeager ◽  
Diane Weigle

Abstract Dwarf burford holly (Ilex cornuta ‘Burfordii Nana’) fertilized with 22.1 g N/container/yr of nitrogen during production in the nursery generated more new shoot weight but less root weight after transplanting to a landscape than those receiving 14.8 g N/container/yr. Slicing the root ball at planting, compared to not slicing, resulted in comparable regenerated root weight but reduced new shoot number, new shoot dry weight and new shoot:regenerated root dry weight ratio when irrigation was not applied daily after transplanting. Although irrigation frequency did not impact total weight of regenerated roots into landscape soil, more roots grew from the bottom half of the root ball when plants were irrigated periodically after planting than when plants received daily irrigation. Plants irrigated other than daily produced fewer shoots and less shoot weight than those receiving irrigation daily after transplanting. When plants were without irrigation for 4 or 6 days in the first week after transplanting, those planted without the nursery container on the root ball were more stressed (more negative xylem potential) than those planted with the container still on the root ball. However, two weeks later, plants without the nursery container were less stressed due to root growth into landscape soil.


HortScience ◽  
2013 ◽  
Vol 48 (6) ◽  
pp. 756-761 ◽  
Author(s):  
Genhua Niu ◽  
Terri Starman ◽  
David Byrne

The responses of garden roses to irrigation water with elevated salts are unknown. Two experiments were conducted to evaluate the relative salt tolerance of 13 self-rooted rose cultivars by irrigating the plants with nutrient solutions at an electrical conductivity (EC) of 1.4 dS·m−1 (control) or nutrient saline solutions at EC of 3.1, 4.4, or 6.4 dS·m−1. In Expt. 1, ‘Belinda’s Dream’, ‘Caldwell Pink’, ‘Carefree Beauty’, ‘Folksinger’, ‘Quietness’, and ‘Winter Sunset’ plants were grown in a greenhouse from 13 Aug. to 21 Oct. (10 weeks). Shoot dry weight of all cultivars decreased as EC of irrigation water increased. ‘Winter Sunset’ was most sensitive among these cultivars to salt stress followed by ‘Carefree Beauty’ and ‘Folksinger’ with severe leaf injury at EC of 3.1 dS·m−1 or higher or death at EC of 6.4 dS·m−1. No visual damage was observed in ‘Belinda’s Dream’ or ‘Caldwell Pink’, regardless of the salinity level. In Expt. 2, ‘Basye’s Blueberry’, ‘Iceberg’, ‘Little Buckaroo’, ‘The Fairy’, ‘Marie Pavie’, ‘Rise N Shine’, and ‘Sea Foam’ plants were grown in the greenhouse from 29 Sept. to 16 Nov. (7 weeks) and irrigated with the same nutrient or nutrient saline solutions. Salinity treatment did not affect shoot dry weight of ‘Basye’s Blueberry’, ‘Little Buckaroo’, ‘Sea Foam’, and ‘Rise N Shine’. Shoot dry weight of ‘Iceberg’, ‘The Fairy’, and ‘Marie Pavie’ decreased as EC of irrigation water increased. No or little visual damage was observed in ‘Little Buckaroo’, ‘Sea Foam’, and ‘Rise N Shine’. Leaf tip burns were seen in ‘Iceberg’, ‘Marie Pavie’, ‘Basye’s Blueberry’, and ‘The Fairy’ at EC 6.4 of dS·m−1. Generally, these symptoms were less severe than those observed in Expt. 1, probably attributable partially to the shorter treatment period. Whereas shoot Na+ and Cl– varied greatly among the rose cultivars, the shoot concentrations of Ca2+, K+, and Mg2+ did not. Generally, salinity-tolerant cultivars had higher shoot Na+ and Cl– concentrations. In summary, in Expt. 1, ‘Belinda’s Dream’ was the most tolerant cultivar, whereas ‘Winter Sunset’ was the least tolerant followed by ‘Carefree Beauty’. In Expt. 2, ‘Iceberg’, ‘Marie Pavie’, and ‘The Fairy’ were less tolerant to salinity as compared with other cultivars, although the differences were small.


HortScience ◽  
2003 ◽  
Vol 38 (1) ◽  
pp. 88-91 ◽  
Author(s):  
P. Revilla ◽  
J.R. Hotchkiss ◽  
W.F. Tracy

Many sweet corn hybrids germinate poorly and have low seedling vigor in cold soils. Sources of cold tolerance and an understanding of its inheritance would benefit sweet corn production. Our objective was to determine the genetics of cold tolerance among open-pollinated progenitors of modern sweet corn. Six open-pollinated sweet corn cultivars were used as parents of a diallel. The 15 crosses plus reciprocals, parents, and checks were evaluated in cold chambers. Growing conditions were 14 hours with light at 14 °C, and 10 hours without light at 10 °C. Days to emergence, percent emergence, shoot dry weight, and root dry weight were recorded. The experiment was repeated in the greenhouse under warm conditions. Variation for cold tolerance was present among the crosses and cultivars. The variation was primarily due to general combining ability (GCA) effects, with specific combining ability (SCA) effects and reciprocal effects being significant for seedling dry mater. `Howling Mob' had significant favorable GCAs for all cold tolerance traits and resulted in the most cold-tolerant hybrids. `Country Gentleman' and `Stowell's Evergreen' were the slowest emerging parents. Days to emergence under cold conditions was not correlated to days to emergence under warm conditions. The correlations between root weight (cold) and root weight (warm) and shoot weight (cold) and shoot weight (warm) were significant, positive, and relatively large. In this material it appears that seedling vigor under warm conditions could be used to predict seedling size under cold conditions.


Sign in / Sign up

Export Citation Format

Share Document