scholarly journals Differential Cold Acclimation Ability of Petunia spp.

HortScience ◽  
2009 ◽  
Vol 44 (5) ◽  
pp. 1219-1222 ◽  
Author(s):  
Aaron E. Walworth ◽  
Ryan M. Warner

Freezing tolerance of many plant species increases after exposure to low, nonfreezing temperatures, a process termed cold acclimation. In some species, shortened photoperiods also bring about an increase in freezing tolerance. Within the plant family Solanaceae, species vary widely in cold acclimation ability. The objectives of this work were to examine the effects of low temperature and photoperiod on cold acclimation of Petunia hybrida (Hook.) Vilm. ‘Mitchell’ and to evaluate cold acclimation of several Petunia species by measuring freezing tolerance using an electrolyte leakage assay on leaf tissue discs. Temperature, but not photoperiod, influenced cold acclimation of P. hybrida. Whether grown under long days or short days, nonacclimated plants had an EL50 value (temperature at which 50% of cellular electrolytes are lost) of ≈–2 °C. Plants acclimated by gradual cooling at temperatures of 15 °C, 10 °C, and 3 °C for 7 days each reached an EL50 of ≈–5 °C regardless of photoperiod. Exposure to 3 °C under short days for 1 or 3 weeks resulted in EL50 temperatures of –3.9 and –4.9 °C, respectively. Freezing tolerance of petunia species P. exserta Stehmann, P. integrifolia (Hook.) Schinz & Thell., P. axillaris (Lam.) Britton et al. (USDA accessions 28546 and 28548), and P. hybrida ‘Mitchell’ was similar before cold acclimation, but varied from –5 °C for P. exserta to –8 °C for P. axillaris (accession 28548) after cold acclimation. Our results demonstrate the cold acclimation ability of Petunia spp. and identify wild germplasm sources with potential usefulness for improving freezing tolerance of cultivated petunia.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 525A-525
Author(s):  
Christopher L. Owens ◽  
J.F. Hancock ◽  
A.F. Iezzoni

Sour cherry and strawberry are examples of two Rosaceous species that often suffer crop reductions due to spring freezes. Breeding for improved floral freezing tolerance has the potential to mitigate the susceptibility of these plants to spring frosts. In model plant systems, researchers have been able to identify genes that play a role in freezing tolerance by initially searching for mRNAs regulated in response to cold temperatures. To search for cold-responsive freezing-tolerance genes in strawberry and sour cherry, it is necessary to first define their cold acclimation response. To test the hypothesis that sour cherry and strawberry flowers have the ability to cold acclimate, blooming plants were exposed to 4 °C and 16 h light for 14 days. Sour cherry styles and strawberry receptacles from open, fully developed flowers were excised, and electrolyte leakage curves were generated over a range of subzero temperatures. The temperature at which 50% electrolyte leakage (EL50) occurred was used to compare treatments. The flowers of two strawberry cultivars were tested for the ability to cold acclimate. Non-acclimated `Chandler' receptacles had an EL50 of -2.9 °C, while non-acclimated `Honeoye' had an EL50 of -3.4 °C. Conversely, acclimated `Chandler' receptacles had an EL50 of -7.7 and acclimated `Honeoye' receptacles had an EL50 of -8.7 °C, both are significantly different from non-acclimated values (P ≤ 0.01). Additionally, sour cherry styles were collected from the field at full bloom from a mapping population of 86 individuals from the cross `Rheinische Schattenmorelle' × `Erdi Botermo' and acclimated as previously described. The EL50 of the 86 progeny ranged from approximately -2.0 to -6.0 °C.


2014 ◽  
Vol 26 (8) ◽  
pp. 3326-3342 ◽  
Author(s):  
Rafael Catalá ◽  
Rosa López-Cobollo ◽  
M. Mar Castellano ◽  
Trinidad Angosto ◽  
José M. Alonso ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 450
Author(s):  
Mohamed Ahres ◽  
Tamás Pálmai ◽  
Krisztián Gierczik ◽  
Petre Dobrev ◽  
Radomíra Vanková ◽  
...  

Cold acclimation, the necessary prerequisite for promotion of freezing tolerance, is affected by both low temperature and enhanced far-red/red light (FR/R) ratio. The impact of FR supplementation to white light, created by artificial LED light sources, on the hormone levels, metabolism, and expression of the key hormone metabolism-related genes was determined in winter barley at moderate (15 °C) and low (5 °C) temperature. FR-enhanced freezing tolerance at 15 °C was associated with promotion of abscisic acid (ABA) levels, and accompanied by a moderate increase in indole-3-acetic acid (IAA) and cis-zeatin levels. The most prominent impact on the plants’ freezing tolerance was found after FR pre-treatment at 15 °C (for 10 days) followed by cold treatment at FR supplementation (7 days). The response of ABA was diminished in comparison with white light treatment, probably due to the elevation of stress tolerance during FR pre-treatment. Jasmonic acid (JA) and salicylic acid (SA) were transiently reduced. When the plants were exposed directly to a combination of cold (5 °C) and FR supplementation, ABA increase was higher than in white light, and was associated with enhanced elevation of JA and, in the longer term (after 7 days), with IAA and cis-zeatin increase, which indicates a stronger stress response and better acclimation. Cold hardening was more efficient when FR light was applied in the early developmental stage of the barley plants (three-leaf stage, 18 days), rather than in later stages (28-days). The dynamics of the phytohormone changes are well supported by the expression profiles of the key hormone metabolism-related genes. This series of treatments serves as evidence for the close relationship between plant hormones, light quality, and low temperature at the beginning of cold acclimation. Besides the timing of the FR treatments, plant age also represents a key factor during light spectrum-dependent cold acclimation.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 402-404
Author(s):  
Reeser C. Manley ◽  
Rita L. Hummel

Mefluidide, a synthetic plant growth regulator, has been reported to protect chilling-sensitive plants from chilling damage and enhance the freezing tolerance of certain winter-hardy herbaceous plants. The potential of mefluidide to enhance the freezing tolerance of nonhardened and dehardening cabbage (Brassica oleracea L. Capitata Group) leaf tissue was investigated. Mefluidide at 0 to 60 mg·L–1 was tested on `Brunswick' and `Golden Acre' cabbage in five experiments. Leaf tissue freezing tolerance was measured 3 to 9 days postapplication by electrolyte leakage assay. The interval between application and freeze testing had no effect on leaf freeze tolerance. The effect of mefluidide at low rates on leaf freeze tolerance was small and inconsistent. At 30 and 60 mg·L–1, leaf freeze tolerance was decreased consistently. Chemical name used: N-{2,4-dimethyl-5-[[trifluromethyl)sulfonyl]amino]phenyl}acetamide (mefluidide).


2016 ◽  
Vol 67 (6) ◽  
pp. 655 ◽  
Author(s):  
M. Rokebul Anower ◽  
Anne Fennell ◽  
Arvid Boe ◽  
Ivan W. Mott ◽  
Michael D. Peel ◽  
...  

We conducted greenhouse experiments to compare 14 lucerne (alfalfa, Medicago sativa L.) germplasms for their survival following freezing. Some are collections adapted to the Grand River National Grasslands in South Dakota. We hypothesised that these collections might have developed a tolerance to survive the frigid growth conditions common there. Two of these collections, River side (RS) and Foster ranch (FR), showed greater freezing tolerance than the other germplasms tested, based on their consistent survival rates with or without cold acclimation. In multiple freezing studies, RS and FR had average survival rates of 74% and 79%, respectively, in contrast to the commercial cultivars Apica and CUF-101 (CUF) (64% and 24%, respectively). The average temperature at which 50% of ions in plant tissues leak out (LT50) by freezing based on leaf electrolyte leakage was closely correlated with survival rates. Leaf LT50 improved 2–3-fold after 3 days of cold acclimation, based on leaf electrolyte leakage analysis, reaching −18°C, –9.6°C, –8.5°C, and −5°C for RS, FR, Apica, and CUF, respectively. Comparison of total soluble sugars and relative water content in shoots before and after cold acclimation showed that they were not well correlated with freezing tolerance and could not explain the superior responses of RS and FR during cold acclimation. Transcript analysis of cold-responsive MsCBF1, MsCBF2 and CAS15B genes showed that RS, FR, Apica and CUF exhibited distinct patterns of cold induction. Although RS, FR and Apica showed a rapid or greater increase in expression level of one or two of these genes, CUF showed only a moderate induction in MsCBF2 and CAS15B transcripts, suggesting that expression of these genes may be a good molecular marker for freezing tolerance in lucerne. The findings provide evidence that freezing tolerance in lucerne is a complex trait and that a combination of different mechanisms may greatly improve freezing tolerance. RS and FR are potential resources in breeding for improving freezing tolerance in lucerne.


2008 ◽  
Vol 148 (2) ◽  
pp. 1094-1105 ◽  
Author(s):  
Juan C. Cuevas ◽  
Rosa López-Cobollo ◽  
Rubén Alcázar ◽  
Xavier Zarza ◽  
Csaba Koncz ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1554
Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.


2018 ◽  
Vol 98 (5) ◽  
pp. 1109-1118 ◽  
Author(s):  
Mervi M. Seppänen ◽  
Ville Alitalo ◽  
Hanna K. Bäckström ◽  
Kirsi Mäkiniemi ◽  
Venla Jokela ◽  
...  

Alfalfa (Medicago sativa L.) is one of the most popular forage legume crops worldwide. Its cultivation in the boreal and sub-boreal zone is restricted by inadequate winter hardiness, but global warming may increase its adaptability in these latitudes. Here, we examined variation in growth and freezing tolerance of four alfalfa cultivars recommended for the northern temperate climates of Europe (Alexis, Lavo, Live, and Nexus) and two cultivars with adaptation to milder or Mediterranean climates (Rangelander and Hunter River). Two experiments under controlled conditions (growth cessation and cold acclimation experiments) along with a 2-yr field experiment were conducted. Lavo was the most freezing-tolerant cultivar in both the cold acclimation and field experiments. Both Rangelander and Hunter River showed poor freezing tolerance. Lavo responded to decreasing temperatures, unlike the response to shorter day length, by allocating biomass to the roots. In general, better freezing tolerance was associated with high total nonstructural carbohydrate and low starch content. The field experiment results revealed that the more freezing-tolerant cultivars may have some advantages regarding yield, especially in the second year, but the differences between the cultivars were modest.


Sign in / Sign up

Export Citation Format

Share Document