scholarly journals Nitrate Leaching Potential under Variable and Uniform Nitrogen Fertilizer Management in Irrigated Potato Systems

2003 ◽  
Vol 13 (4) ◽  
pp. 605-609 ◽  
Author(s):  
K.M Whitley ◽  
J.R Davenport

Potato (Solanum tuberosum) production in Washington State's Central Columbia Plateau faces nitrogen (N) management challenges due to the combination of coarse textured soils (sandy loam to loam) and hilly topography in this region as well as the high N requirement of potato. Potato growth and development can vary with the N availability across the field. In this 2-year study, two adjacent potato fields were selected each year (1999 and 2000). Each field was soil sampled on a 200 × 200 ft (61.0 m) grid to establish existing soil N content. One field was preplant fertilized with variable N rate while the other was conventionally preplant fertilized, applying a uniform rate across the field based on the field average. During the growing season, each field was monitored for nitrate leaching potential using ion exchange membrane technology. Soil and plant nutrient status were also monitored by collecting in-season petiole and soil samples at two key phenological stages, tuber initiation and tuber bulking. Overall this research showed that variable rate preplant N fertilizer management reduced N leaching potential during the early part of the growing season, but did not persist the entire season. Since preplant N accounted for only 40% of the total seasonal N applied, it is possible that further gains could be made with variable rate in-season N application or with variable rate water application.

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2055
Author(s):  
Chedzer-Clarc Clément ◽  
Athyna N. Cambouris ◽  
Noura Ziadi ◽  
Bernie J. Zebarth ◽  
Antoine Karam

Nitrate leaching is of great environmental concern, particularly with potatoes grown on sandy soils. This 3-year study evaluated the effect of three N rates (100, 150, and 200 kg ha−1) of single applications of polymer-coated urea (PCU) and a 75% PCU + 25% urea mixture, plus a conventional split application of 200 kg N ha−1 of a 50% ammonium sulfate + 50% calcium ammonium nitrate mixture (CONV) on NO3−-N leaching, potato yield, and N uptake under irrigated and non-irrigated conditions on a sandy soil in Quebec (Canada). Fertilizer N application increased growing season NO3−-N leaching only under irrigation. On average, irrigation increased seasonal NO3−-N leaching by 52%. Under irrigated conditions, PCU reduced NO3−-N leaching compared to PCU + urea. However, both PCU and PCU + urea significantly increased NO3−-N leaching compared to the CONV at the equivalent N rate of 200 kg N ha−1. This was attributed to the timing of soil N availability and deep-water percolation. Total (TY) and marketable (MY) yields in the CONV were similar to those in the PCU applied at the equivalent N rate of 200 kg N ha−1. Despite lower plant N uptake, PCU resulted in greater TY and MY compared to PCU + urea. Residual soil inorganic N was greater for PCU and PCU + urea compared to the CONV, providing evidence that PCU products have the potential to increase NO3−-N leaching after the growing season. In this study, PCU was an agronomically and environmentally better choice than PCU + urea. The results also showed that the efficiency of PCU to reduce seasonal NO3−-N leaching may vary according to the timing of precipitation and irrigation.


1998 ◽  
Vol 38 (10) ◽  
pp. 191-197
Author(s):  
T. Németh ◽  
L. Pásztor ◽  
J. Szabó

After the growing season, a part of the nitrogen remains in forms sensitive to changes of the conditions, such as nitrate. In years with above-average precipitation a significant amount of nitrate can leave the rooting zone. Integration of knowledge related to environmental conditions of a certain area with the soil, water, and crop management practices helps to prevent the simultaneity of the unfavourable processes leading to nitrate leaching, thus water resources may be protected from nitrate pollution of agricultural origin. In our work we present a stochastic approach for the evaluation of the vulnerability of soils for nitrate leaching. The method was applied for mapping N-leaching hazard in Hungary at a scale of 1:1M.


2002 ◽  
Vol 12 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Hudson Minshew ◽  
John Selker ◽  
Delbert Hemphill ◽  
Richard P. Dick

Predicting leaching of residual soil nitrate-nitrogen (NO3-N) in wet climates is important for reducing risks of groundwater contamination and conserving soil N. The goal of this research was to determine the potential to use easily measurable or readily available soilclimatic-plant data that could be put into simple computer models and used to predict NO3 leaching under various management systems. Two computer programs were compared for their potential to predict monthly NO3-N leaching losses in western Oregon vegetable systems with or without cover crops. The models were a statistical multiple linear regression (MLR) model and the commercially available Nitrate Leaching and Economical Analysis Package model (NLEAP 1.13). The best MLR model found using stepwise regression to predict annual leachate NO3-N had four independent variables (log transformed fall soil NO3-N, leachate volume, summer crop N uptake, and N fertilizer rate) (P < 0.001, R2 = 0.57). Comparisons were made between NLEAP and field data for mass of NO3-N leached between the months of September and May from 1992 to 1997. Predictions with NLEAP showed greater correlation to observed data during high-rainfall years compared to dry or averagerainfall years. The model was found to be sensitive to yield estimates, but vegetation management choices were limiting for vegetable crops and for systems that included a cover crop.


2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


1992 ◽  
Vol 43 (5) ◽  
pp. 1157 ◽  
Author(s):  
WM Blacklow ◽  
PC Pheloung

Chlorsulfuron and triasulfuron were applied to the surface of acidic, sandy loam at a low rainfall site in 1989 (129 mm June-October) and a high rainfall site in 1990 (217 mm July-August). Four environments were obtained by early and late application times and lime addition in 1989 and by a wetter site in 1990. The pH of the surface 10 cm was 4.9 in 1989, 5.8 in 1990 and 6.5 after the addition of limestone in 1989. The plots were left fallow or sown, prior to herbicide applications, to wheat (cv. Kulin). Hourly averages of rainfall, soil and air temperature were recorded. The temperature range was 2.7�C to 23.2�C. The soil profiles were sampled on 5 to 7 occasions and herbicide residues were determined by a laboratory bioassay (sensitivity >0.4 8g kg-1 soil). Chlorsulfuron and triasulfuron were detected to 300 mm in the wetter environment but neither herbicide was as mobile in the profile as water. More herbicide moved to the lower layers of the profile in the higher pH environment. The half-lives for residues ranged from 12 to 28 days. Shoot biomass of wheat seedlings was suppressed by both herbicides but grain yields were unaffected. The residues failed to prevent reinvasion of the wheat plots by weeds, notably Arctotheca calendula.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ligang Xu ◽  
Hailin Niu ◽  
Jin Xu ◽  
Xiaolong Wang

Protecting water resources from nitrate-nitrogen (NO3-N) contamination is an important public health concern and a major national environmental issue in China. Loss of NO3-N in soils due to leaching is not only one of the most important problems in agriculture farming, but is also the main factor causing nitrogen pollution in aquatic environments. Three typical intensive agriculture farmlands in Jiangyin City in China are selected as a case study for NO3-N leaching and modeling in the soil profile. In this study, the transport and fate of NO3-N within the soil profile and nitrate leaching to drains were analyzed by comparing field data with the simulation results of the LEACHM model. Comparisons between measured and simulated data indicated that the NO3-N concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions and the rainfall depth and distribution. Moreover, the study reveals that the LEACHM model gives a fair description of the NO3-N dynamics in the soil and subsurface drainage at the field scale. It can also be concluded that the model after calibration is a useful tool to optimize as a function of the combination “climate-crop-soil-bottom boundary condition” the nitrogen application strategy resulting for the environment in an acceptable level of nitrate leaching. The findings in this paper help to demonstrate the distribution and migration of nitrogen in intensive agriculture farmlands, as well as to explore the mechanism of groundwater contamination resulting from agricultural activities.


1997 ◽  
Vol 77 (2) ◽  
pp. 161-166 ◽  
Author(s):  
C. A. Campbell ◽  
Y. W. Jamel ◽  
A. Jalil ◽  
J. Schoenau

We need an easy-to-use chemical index for estimating the amount of N that becomes available during the growing season, to improve N use efficiency. This paper discusses how producers may, in future, use crop growth models that incorporate indices of soil N availability, to make more accurate, risk-sensitive estimates of fertilizer N requirements. In a previous study, we developed an equation, using 42 diverse Saskatchewan soils, that related potentially mineralizable N (N0) to NH4N extracted with hot 2 M KCl (X), (i.e., N0 = 37.7 + 7.7X, r2 = 0.78). We also established that the first order rate constant (k) for N mineralization at 35°C is indeed a constant for arable prairie soils (k = 0.067 wk−1). We modified the N submodel of CERES-wheat to include k and N0 (values of N0 were derived from the hot KCl test). With long-term weather data (precipitation and temperature) as input, this model was used to estimate probable N mineralization during a growing season and yield of wheat (grown on fallow or stubble), in response to fertilizer N rates at Swift Current. The model output indicated that the amount of N mineralized in a growing season for wheat on fallow was similar to that for wheat on stubble, as we hypothesized. Further the model indicated that rate of fertilizer N had only minimal effect on N mineralized. We concluded that, despite the importance of knowing the Nmin capability of a soil, it is available water, initial levels of available N and rate of fertilizer N that are the main determinants of yield in this semiarid environment. The theoretical approach we have proposed must be validated under field conditions before it can be adopted for use. Key words: N mineralization, Hot KCl-NH4-N, potentially mineralizable N, CERES-wheat model


2001 ◽  
Vol 1 ◽  
pp. 10-16 ◽  
Author(s):  
James L. Baker

The primary mode of nitrogen (N) loss from tile-drained row-cropped land is generally nitrate-nitrogen (NO3-N) leaching. Although cropping, tillage, and N management practices can be altered to reduce the amount of leaching, there are limits as to how much can be done. Data are given to illustrate the potential reductions for individual practices such as rate, method, and timing of N applications. However, most effects are multiplicative and not additive; thus it is probably not realistic to hope to get overall reductions greater than 25 to 30% with in-field practices alone. If this level of reduction is insufficient to meet water quality goals, additional off-site landscape modifications may be necessary.


2016 ◽  
Vol 20 (1) ◽  
pp. 59-64
Author(s):  
MN Islam ◽  
MM Rahman ◽  
MJA Mian ◽  
MH Ali

Leaching loss of nutrients hampers plant growth and contributes to environmental pollution. An experiment was conducted at the net house of Soil Science Department, Bangladesh Agricultural University, Mymensingh during January to May 2009 to find out the leaching loss of N, P, K and S from sandy loam soil. Each pot received 6.67 kg dry soil with an opening at the bottom for collecting leachates. Six treatments were used: T0 = control, T1 = NPKS (120, 25, 60 and 20 kg ha-1), T2 = NPKS (180, 37, 90 and 30 kg ha-1), T3 = NPKS (90, 5, 28 and 17 kg ha-1) + cowdung (2.5 t ha-1), T4 = NPKS (109, 25, 60 and 20 kg ha-1, N as USG) and T5 = as T1 but N applied as foliar spray. Treatments were arranged in a completely randomized design with three replications. Leachates were collected at 15 days interval for determination of NPKS. The total leaching loss of N, P, K and S due to different treatments ranged from 16.00 to 90.21, 0.07 to 0.29, 9.60 to 11.20 and 3.75 to 17.81 kg ha-1, respectively. Application of chemical fertilizer at higher rates resulted in greater loss of nutrients. Integrated fertilizer management with cowdung (T3) minimized such losses. Use of USG also reduced leaching loss of N, P, K and S. The application of cowdung and USG with recommended balanced fertilizer might be useful for minimizing N, P, K and S loss from wetland rice field.Bangladesh Rice j. 2016, 20(1): 59-64


Sign in / Sign up

Export Citation Format

Share Document