OXYGEN FLUX MEASUREMENTS IN ORGANIC SOIL

1980 ◽  
Vol 60 (4) ◽  
pp. 641-650 ◽  
Author(s):  
JAMES A. CAMPBELL

Many measurements of oxygen flux in mineral soils have been reported; however, few such measurements have been made in organic soil. Almost all reported measurements of oxygen flux are at constant applied voltage, despite criticism of this technique, possibly due to the complexity of existing techniques for measuring oxygen flux at effective voltage. Equipment suitable for measuring oxygen flux at applied and effective voltage in organic soil was designed, and simplified techniques were developed and tested. As reported for mineral soils, soil resistance is relatively constant spatially and with depth in individual soils. Limited poisoning of the platinum electrode surface occurred after long periods of time and, contrary to previous assumptions, cannot be detected by erratic readings. Unlike mineral soil, the amperage-voltage slopes are constant over a wide range of organic soils, simplifying the technique for estimating oxygen flux at constant effective volatage. Comparison of simultaneous measurements of oxygen flux at constant and effective voltage indicates that oxygen flux measurements at effective voltage were twice those at applied voltage and strongly correlated (r2 = 0.96, n = 22).

2021 ◽  
Vol 9 ◽  
Author(s):  
A. Vilhelmiina Harju ◽  
Ilkka Närhi ◽  
Marja Mattsson ◽  
Kaisa Kerminen ◽  
Merja H. Kontro

Views on the entry of organic pollutants into the organic matter (OM) decaying process are divergent, and in part poorly understood. To clarify these interactions, pesticide dissipation was monitored in organic and mineral soils not adapted to contaminants for 241 days; in groundwater sediment slurries adapted to pesticides for 399 days; and in their sterilized counterparts with and without peat (5%) or compost-peat-sand (CPS, 15%) mixture addition. The results showed that simazine, atrazine and terbuthylazine (not sediment slurries) were chemically dissipated in the organic soil, and peat or CPS-amended soils and sediment slurries, but not in the mineral soil or sediment slurries. Hexazinone was chemically dissipated best in the peat amended mineral soil and sediment slurries. In contrast, dichlobenil chemically dissipated in the mineral soil and sediment slurries. The dissipation product 2,6-dichlorobenzamide (BAM) concentrations were lowest in the mineral soil, while dissipation was generally poor regardless of plant-derived OM, only algal agar enhanced its chemical dissipation. Based on sterilized counterparts, only terbutryn appeared to be microbially degraded in the organic soil, i.e., chemical dissipation of pesticides would appear to be utmost important, and could be the first response in the natural cleansing capacity of the environment, during which microbial degradation evolves. Consistent with compound-specific dissipation in the mineral or organic environments, long-term concentrations of pentachloroaniline and hexachlorobenzene were lowest in the mineral-rich soils, while concentrations of dichlorodiphenyltrichloroethane (DTT) and metabolites were lowest in the organic soils of old market gardens. OM amendments changed pesticide dissipation in the mineral soil towards that observed in the organic soil; that is OM accelerated, slowed down or stopped dissipation.


2020 ◽  
Vol 49 (2) ◽  
pp. 473-481
Author(s):  
Erik L Roldán ◽  
Julien M Beuzelin ◽  
Matthew T VanWeelden ◽  
Ronald H Cherry

Abstract A study was conducted in Florida to determine sugarcane borer, Diatraea saccharalis (F.), injury and infestation levels in sugarcane (Saccharum spp. hybrids), D. saccharalis parasitism rates, and ant foraging activity in 32 commercial fields as affected by soil type (shallow organic vs deep organic vs mineral). In 2017 and 2018, each field was sampled four times during the summer for D. saccharalis by inspecting 100 sugarcane stalks and for foraging ants using plastic tubes baited with hot dog at 12 locations. One non-parasitized D. saccharalis larva was collected in 2017 and in 2018 out of 12,100 and 12,600 stalks sampled, respectively. Additional sampling of 50 stalks per field in October showed that 0.6% (2017) and 0.1% (2018) of the sugarcane stalks had bored internodes, and one Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) cocoon mass was observed. Seven ant species foraged in sugarcane fields, including the red imported fire ant, Solenopsis invicta Buren, which was the most abundant ant. Solenopsis invicta was not affected by soil type; however, sugarcane fields on shallow organic soils might represent a more suitable environment. The third most abundant foraging ant, Nylanderia bourbonica (Forel), was more abundant in mineral soil fields than in shallow and deep organic soil fields. Results suggest that D. saccharalis population levels in Florida sugarcane are extremely low under current production conditions regardless of soil type. In addition, the observation of C. flavipes, S. invicta, and six other ant species suggest that biological control contributes to these low D. saccharalis population levels.


2010 ◽  
Vol 19 (7) ◽  
pp. 961 ◽  
Author(s):  
Laura L. Bourgeau-Chavez ◽  
Gordon C. Garwood ◽  
Kevin Riordan ◽  
Benjamin W. Koziol ◽  
James Slawski

Water content reflectometry is a method used by many commercial manufacturers of affordable sensors to electronically estimate soil moisture content. Field‐deployable and handheld water content reflectometry probes were used in a variety of organic soil‐profile types in Alaska. These probes were calibrated using 65 organic soil samples harvested from these burned and unburned, primarily moss‐dominated sites in the boreal forest. Probe output was compared with gravimetrically measured volumetric moisture content, to produce calibration algorithms for surface‐down‐inserted handheld probes in specific soil‐profile types, as well as field‐deployable horizontally inserted probes in specific organic soil horizons. General organic algorithms for each probe type were also developed. Calibrations are statistically compared to determine their suitability. The resulting calibrations showed good agreement with in situ validation and varied from the default mineral‐soil‐based calibrations by 20% or more. These results are of particular interest to researchers measuring soil moisture content with water content reflectometry probes in soils with high organic content.


2014 ◽  
Vol 94 (1) ◽  
pp. 109-118 ◽  
Author(s):  
A. Deora ◽  
B. D. Gossen ◽  
S. F. Hwang ◽  
D. Pageau ◽  
R. J. Howard ◽  
...  

Deora, A., Gossen, B. D., Hwang, S. F., Pageau, D., Howard, R. J., Walley, F. and McDonald, M. R. 2014. Effect of boron on clubroot of canola in organic and mineral soils and on residual toxicity to rotational crops. Can. J. Pant Sci. 94: 109–118. Application of boron (B) has been reported to reduce clubroot severity in various Brassica spp., but residual B can have phytotoxic effects on other crops in the rotation. The objective of this study was to test the efficacy of broadcast application of B for clubroot suppression in canola (B. napus) and the effect of residual B on wheat, barley, field pea and canola. Field trials to assess clubroot suppression by B at various rates (1 to 64 kg B ha−1) were conducted in organic (Ontario) and mineral soils (Alberta, Quebec) heavily infested with Plasmodiophora brassicae in 2011 and 2012. Phytotoxicity was not observed in canola until applications rates exceeded 48 kg B ha−1. Boron did not reduce clubroot incidence at any site, irrespective of rate, and only reduced severity at the organic soil site at 6 wk after seeding. There was a small increase in shoot weight and yield of canola with increasing B application rates at the organic soil site. The potential phytotoxicity of residual B (4 to 16 kg B ha−1) was assessed in mineral soils in Ontario and Saskatchewan in 2012. Toxicity symptoms were noted initially in most of the crops, but seedlings recovered quickly and there was no significant reduction in fresh weight at harvest or seed yield of most of the cultivars. The present study indicates that pre-plant broadcast application of B delays clubroot development and increases vegetative growth and yield compared with non-treated plants in organic soil. Also, even high residual rates (16 kg ha−1) of application are unlikely to have a negative effect on crops in rotation in mineral soil. However, the effect of B application on canola yield found in this study was not sufficient to justify application for commercial canola production, even where clubroot is prevalent.


1996 ◽  
Vol 26 (11) ◽  
pp. 1899-1904 ◽  
Author(s):  
Inderjit Inderjit ◽  
A.U. Mallik

The nature of interference potential of Kalmiaangustifolia L., a boreal forest understorey shrub, was investigated in laboratory experiments. Organic and mineral soils, not previously associated with Kalmia, were amended with different quantities of its leaf litter and leaf litter leachates. The objectives of the study were (i) to determine changes in soil chemistry after amending with Kalmia and (ii) to determine the effect of amendment on growth of black spruce (Piceamariana (Mill.) BSP) seedlings. All soils were analyzed for pH, organic matter, PO4−, N, Ba, Cu, Zn, Fe, Mn, Ca, Na, K, Mg, Al, and total phenolics. Chemical characteristics of both organic and mineral soils were significantly changed. Water-soluble phenolics in one of the amended organic soils were significantly higher than in unamended organic soil. However, all of the amended mineral soils had significantly higher total phenolic contents than unamended control soils. A linear decrease in N content was observed in amended organic and mineral soils with increasing quantities of Kalmia leaf litter. Amended mineral soils had higher concentrations of Fe, Mn, Al, and PO4− than the control. We relate higher accumulations of PO4−, Fe, Mn, and Al in amended mineral soils to higher soil phenolic contents. Amendment of organic and mineral soils significantly reduced the root and shoot growth of black spruce. This study demonstrates that Kalmia has potential for nutrient interference and does not rule out allelopathic effects of Kalmia to black spruce seedling growth.


2006 ◽  
Vol 16 (2) ◽  
pp. 286-293 ◽  
Author(s):  
Sean M. Westerveld ◽  
Mary Ruth McDonald ◽  
Alan W. McKeown

The Nutrient Management Act (NMA) established in the province of Ontario in 2002 has prompted a re-evaluation of nitrogen (N) management practices. However, N management research in Ontario is currently outdated. The experiment in this 3-year study was designed to establish the yield response of carrot (Daucus carota) to N fertilization on mineral and organic soils and identify the relative yield effects of preplant and residual soil N. In 2002, N was applied at 0%, 50%, 100%, 150%, and 200% of recommended N application rates in Ontario as ammonium nitrate (organic soil: 60 kg·ha-1 preplant; mineral soil: 110 kg·ha-1 split 66% preplant/33% sidedress). Experimental units were split in half in 2003 and 2004, and N was applied to one half in 2003 and both halves in 2004 to identify the effects of residual N from the previous season on yield. Crop stand, yield, and quality were assessed at harvest, and storability was assessed by placing carrots into cold storage for 6 months. Nitrogen application rate had no effect on the yield, quality, or storability of carrots grown on organic soil. On mineral soil there were no effects of applied N in the first year of the 3-year study. In the second and third year on mineral soil, yield increased in response to increasing N, up to 200% and 91% of the recommended application rate, respectively, based on the regression equations. Yield declined above 91% of the recommended application rate in the third year due to a decrease in stand at higher N application rates. There were no effects of N on carrot quality or storability on mineral soil. On mineral soil, residual N from the 2002 season had more effect on yield at harvest in 2003 than N applied in 2003. This major effect of residual soil N on yield provides an explanation for the lack of yield response to preplant N application in previous studies conducted in temperate regions. These results indicate that there is no single N recommendation that is appropriate for all years on mineral soil. Assessing the availability of N from the soil at different depths at seeding is recommended to determine the need for N application.


2010 ◽  
Vol 3 (1) ◽  
pp. 131-142 ◽  
Author(s):  
U. Schindler ◽  
L. Müller

Abstract. The paper presents a data base of soil hydrological properties of North East and Central German soils. Included are measured data of the soil water retention curve and the unsaturated hydraulic conductivity function. Information to geo reference, soil type and horizon are given. Additional soil physical data like particle size distribution, dry bulk density, organic matter content and other variables are presented and its measurement is methodically described. The data base includes original measurement results of 278 organic and of 497 mineral soil samples from 103 sites. The mineral soils cover a wide range of texture classes and dry bulk densities. The organic soils and samples vary in dependence on the degree of decomposition and mineralization, the dry bulk density and the total porosity.


2013 ◽  
Vol 59 (1) ◽  
pp. 38-43
Author(s):  
Jana Bútorová

Abstract According to national and international laboratory methods, the density of soil samples is determined by pycnometer in heated samples crushed by ultrasound. In mineral soils, the elementary unit of density is represented by a mineral grain of quartz, granite, andesite, etc. On the other hand, in organic soils, the elementary unit is represented by a leaf (or just a part of it), needles, stems and roots. Heating of the mineral grain causes its release from the soil aggregate. Organic parts of the soil are losing air vacuoles by heat treatment while in the same time, carbohydrates, proteins, oils and resins create new chemicals which are heavier than water. That is a reason why density determination of litter subhorizons in forest soils needs to have different rules in comparison with mineral soil samples. Samples with more than 50 volume per cent of organic matter are not treated by heat and do not decompose. In case of high mineral soil content, mineral parts are removed from the sample and their density is determined. The final density is based on mathematically processed data.


2021 ◽  
Author(s):  
Debjani Sihi ◽  
Stefan Gerber

<p class="rolelistitem">Models of soil organic matter (SOM) decomposition are critical for predicting the fate of soil carbon (and nutrient) under changing climate. Traditionally, models have used a simple set-up where the substrate is divided into conceptual pools to represent their resistance to microbial degradation, and decomposition rates are often proportional to the amount of substrate in each pool. Emerging models now consider explicit microbial dynamics and show that SOM loss under warming may be fundamentally different from the classical models. Microbial explicit models use reaction kinetics, represented on a concentration basis. However, when the substrate makes up most of the volume of soils (e.g., the organic horizon in forest soils or peat), an increase or decrease in SOM does not, or only very little, affect concentrations of microbes and substrate. Consequently, reduction in SOM does not reduce the amount of substrate the microbial biomass encounters. This problem does not occur in classical models like CENTURY. We incorporated the effect of organic matter on soil volume in several microbial models. If microbes are solely limited by enzymes, organic soils or peats are decomposed very quickly as there is no mechanism that stops the positive feedback between microbial growth and SOM concentration until the substrate is gone. Alternative formulations that account for carbon limitation or microbial ‘cannibalism’ display a sweet spot of soil carbon concentration. Interestingly, a response to warming will depend on the amount of organic vs. mineral materials. Apparent Q<sub>10</sub> was higher in fully organic soil than in mineral soils, which was pronounced when small to moderate amounts of the mineral matter was present that diluted the substrate for microbes. We suggest that model formulations need to be clear about the assumption in key processes, as each of the steps in the cascade of biogeochemical reaction can produce surprising results.</p>


1967 ◽  
Vol 47 (2) ◽  
pp. 83-88 ◽  
Author(s):  
S. K. Rana ◽  
G. J. Ouellette

Studies on thirty mineral soil series and five organic soils from the broad cultivated areas of Quebec indicated that total cobalt, extracted with 70% perchloric acid digestion, ranged from 1.1 to 21.6 ppm and 2.5% acetic acid-extractable cobalt from 0.3 to 0.83 ppm. Extractable cobalt in the surface soils was significantly correlated with total cobalt, which in turn was highly dependent on the clay content of the soil. The soil pH or the organic matter content did not seem to have any influence on the cobalt content in the cultivated soils. Light-textured and podzolized soils are likely to be low m cobalt, while soils with richer clay content are higher. Organic soils, in general, were found to be lower in cobalt content than mineral soils. Nineteen out of the thirty mineral soils studied and all the organic soils contained less than 0.25 ppm of extractable cobalt and may be considered as critical or deficient because forage grown on such soils is likely to cause cobalt deficiency in livestock.


Sign in / Sign up

Export Citation Format

Share Document