scholarly journals A Simple and Effective Method for Quantifying Leaf Variegation

2007 ◽  
Vol 17 (3) ◽  
pp. 285-288 ◽  
Author(s):  
Qiansheng Li ◽  
Jianjun Chen ◽  
Dennis B. McConnell ◽  
Richard J. Henny

A simple and effective method for quantification of leaf variegation was developed. Using a digital camera or a scanner, the image of a variegated leaf was imported into a computer and saved to a file. Total pixels of the entire leaf area and total pixels of each color within the leaf were determined using an Adobe Photoshop graphics editor. Thus, the percentage of each color's total pixel count in relation to the total pixel count of the entire leaf was obtained. Total leaf area was measured through a leaf area meter; the exact area of this color was calculated in reference to the pixel percentage obtained from Photoshop. Using this method, variegated leaves of ‘Mary Ann’ aglaonema (Aglaonema x), ‘Ornate’ calathea (Calathea ornate), ‘Yellow Petra’ codiaeum (Codiaeum variegatum), ‘Florida Beauty’ dracaena (Dracaena surculosa), ‘Camille’ dieffenbachia (Dieffenbachia maculata), and ‘Triostar’ stromanthe (Stromanthe sanguinea) were quantified. After a brief training period, this method was used by five randomly selected individuals to quantify the variegation of the same set of leaves. The results were highly reproducible no matter who performed the quantification. This method, which the authors have chosen to call the quantification of leaf variegation (QLV) method, can be used for monitoring changes in colors and variegation patterns incited by abiotic and biotic stresses as well as quantifying differences in variegation patterns of plants developed in breeding programs.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
James Todd ◽  
Barry Glaz ◽  
David Burner ◽  
Collins Kimbeng

Sugarcane (Saccharum L. spp. hybrids) growers depend on breeding programs for new, high-yielding cultivars that have resistance to abiotic and biotic stresses, so breeders continually seek out widely adapted, high yielding germplasm to be used as parents for their programs. Cultivars are sometimes used for this purpose, but their use may be minimized to prevent genetic diversity erosion. The purpose of this study was to determine the importance of cultivars as parents in three USA (one in Florida and two in Louisiana) sugarcane breeding programs by quantifying the percentage of cultivars that had these parental groupings based on published registrations and crossing records. The percentage of cultivars with at least one commercial parent for each program was 81.8%, 77.5%, and 64.3% for the Houma (Ho), Louisiana, Canal Point (CP), Florida and Louisiana State University (LSU) programs, respectively, but cultivars were recently used as parents in only 11.8% (Ho), 16.39% (CP), and 34.3% (LSU) of crosses. The results indicate that the CP and Ho programs should consider increasing the use of cultivars as parents in their breeding programs to increase the probability of selecting potential commercial genotypes, but this should be balanced with high diversity crosses to avoid the loss of diversity.


Author(s):  
Abbas Saidi ◽  
Zohreh Hajibarat

Phytohormones play a key role in plant growth and development. The process of plant’s perception and response to abiotic and biotic stresses is controlled mainly by the phytohormones which act as an endogenous messenger in the regulation of the plant’s status. They can be activated by different signaling pathways in response to environmental stresses. Plants respond to environmental stress through interaction of transcription factors with a handful of cis-regulatory elements (CREs). Some examples of cis elements include abscisic acid-responsive element (ABRE), G-box (CACGTG) element, and W-box. In order to investigate the effects of different hormonal stresses which have a key role in response to biotic and abiotic stresses in rice, microarray data was used. Of the available data, 931 genes revealed significant differences in response to different hormonal stresses such as auxin, cytokinin, abcisic acid, ethylene, salicylic acid, and jasmonic acid. The present results showed that 388 genes were up-regulated, and 543 genes were down-regulated. Most of the genes were up-regulated in response to Indole-3-acetic acid (IAA) hormone. Genes Ontology analysis revealed that they respond to various hormones involved in auxin- responsive genes, auxin-activated signaling pathway and cellular responses to environmental stimuli. G-box had the highest number of cis elements involved in hormonal stress and was regulated by auxin signaling and various stresses. Dehydrin was the only gene up-regulated in response to the six hormones. This gene can be activated in response to abiotic and biotic stresses. As such, dehydrin gene can be used in crop breeding programs to increase tolerance to different environmental stresses in various plant species.


2011 ◽  
Vol 12 (7) ◽  
pp. 643-656 ◽  
Author(s):  
Ederson Akio Kido ◽  
Pedranne Kelle de Araujo Barbosa ◽  
Jose Ribamar Costa Ferreira Neto ◽  
Valesca Pandolfi ◽  
Laureen Michelle Houllou-Kido ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yinli Bi ◽  
Huili Zhou

AbstractA well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.


2015 ◽  
Vol 59 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Haitao Shi ◽  
Yongqiang Qian ◽  
Dun‐Xian Tan ◽  
Russel J. Reiter ◽  
Chaozu He

1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


Sign in / Sign up

Export Citation Format

Share Document