scholarly journals Economic Analysis of Grafted Tomato Production in Sandy Soils in Northern Florida

2013 ◽  
Vol 23 (5) ◽  
pp. 613-621 ◽  
Author(s):  
Desire Djidonou ◽  
Zhifeng Gao ◽  
Xin Zhao

In addition to controlling soilborne diseases, grafting with selected rootstocks has the potential to enhance growth and yields in tomato (Solanum lycopersicum) production. However, information is rather limited regarding its economic viability in different production systems in the United States. The objective of this study was to compare the costs and returns of grafted vs. nongrafted fresh-market tomato production under common management practices in fumigated fields in northern Florida. The field trials were conducted in Live Oak, FL, during Spring 2010 and 2011. ‘Florida 47’ tomato was grafted onto two interspecific hybrid tomato rootstocks: ‘Beaufort’ and ‘Multifort’. Grafted and nongrafted ‘Florida 47’ plants were grown on fumigated raised beds with polyethylene mulch and drip irrigation using recommended commercial production practices for nutrient and pest management. The estimated costs of grafted and nongrafted transplants were $0.67 and $0.15 per plant, respectively, resulting in an additional cost of $3020.16 per acre for using grafted transplants as compared with nongrafted plants. Grafting also led to higher costs of harvesting and marketing tomato fruit as a result of yield improvement (1890 to 2166 25-lb cartons per acre for grafted plant vs. 1457 to 1526 25-lb cartons per acre for nongrafted plant). Partial budget analyses showed that using grafted transplants increased tomato production costs by $4488.03–$5189.76 per acre depending on the rootstock and growing season. However, compared with nongrafted tomato, the net farm return of grafted tomato production was increased by $253.32–$2458.24 per acre based on the tomato shipping point prices. Sensitivity analysis further demonstrated that grafting would be more profitable as the costs of grafted transplants decreased and the market tomato prices increased. These results indicated that although grafting increased the total cost of production, the increase in marketable fruit yield generated significant gross returns to offset costs associated with the use of grafted tomato transplants. Nevertheless, further research is warranted to provide more production budget and net return data about the economic feasibility of grafted tomato production based on a wide range of commercial growing conditions in Florida.

2012 ◽  
Vol 22 (2) ◽  
pp. 252-257 ◽  
Author(s):  
Charles E. Barrett ◽  
Xin Zhao ◽  
Alan W. Hodges

Growers are looking for sustainable alternatives to methyl bromide as a soil fumigant that are effective and economical. Increased demand for organically produced fruits and vegetables has also contributed to the need for environmentally friendly soil-borne disease control methods. Grafting may be a valuable tool for vegetable growers to cope with pest management challenges in production of cucurbits and solanaceous crops; however, there are concerns regarding the higher costs associated with the use of grafted plants in the United States. The main objective of this 2-year study was to determine if grafting with a resistant rootstock could be cost-effective to overcome root-knot nematodes (RKN) (Meloidogyne sp.) and maintain fruit yield in organic heirloom tomato (Solanum lycopersicum) production in Florida's sandy soils. The heirloom tomato cultivar Brandywine was grafted onto the rootstock ‘Multifort’. Nongrafted and grafted ‘Brandywine’ plants were grown organically in two fields that exhibited different levels of RKN infestations. Grafted and nongrafted transplants were estimated to cost $0.78 and $0.17 per plant, respectively. The cost of rootstock seeds accounted for 36% ($0.28/plant) of the total cost of the grafted transplants and 46% of the cost difference between grafted and nongrafted plants. Sensitivity analyses were conducted using these estimated transplant production costs and crop yield data from the field trials as well as price information for heirloom tomato. Results showed that under severe RKN pressure, grafting may be an economically feasible pest control measure to help maintain a profitable production given that the risk of economic crop losses due to RKN outweighed the higher cost of grafted transplants.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 598D-598
Author(s):  
J.M. Kemble ◽  
E. Bauske ◽  
E. Sikora ◽  
G. Zehnder

IPM teams from Alabama, North Florida, Georgia, Kentucky, North Carolina, South Carolina, and Tennessee composed of growers, private consultants, and faculty defined IPM on fresh-market tomatoes and created a survey from this definition to evaluate the level of IPM used by growers in the southeastern U.S. The survey included three sections: cultural practices, pesticide application techniques, and specific pest management practices, and was distributed to tomato growers in the region by mail, at county meetings, and through other relevant venues. Additionally, growers were asked to identify problems (insect, disease, and nonpest, i.e., cultural) and beneficial technology or research developments. Results of the survey revealed that in North Florida, Georgia, Kentucky, North Carolina, and South Carolina more than 75% of the tomato acreage is in the medium or high IPM category. These states have met or exceeded the State IPM teams' criteria for practicing IPM and have met the Federal mandate of IPM implementation on 75% of the fresh-market tomato cropland. Tomato producers listed early blight, late blight and bacterial spot as their main disease problems; tomato fruit worm, thrips, and aphids as their primary insect problems; and poor weather conditions, government regulation, and labor issues as their primary nonpest problems. Producers throughout the region felt that the development of resistant varieties would help them increase production the most. The State IPM teams outlined a clear definition of IPM in fresh-market tomato production and the survey results established a baseline that can be used to measure the success of programs to increase IPM adoption. The results will aid in focusing the Extension/research agenda in the universities in the Southeast.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 572f-572
Author(s):  
J.M.S. Scholberg ◽  
B.L. McNeal ◽  
J.W. Jones ◽  
S.J. Locascio ◽  
S.R. Olsen ◽  
...  

Modeling the growth of field-grown tomato (Lycopersicon esculentum Mill.) should assist researchers and commercial growers to outline optimal crop management strategies for specific locations and production systems. A generic crop-growth model (CROPGRO) was previously adapted to simulate the growth of fresh-market tomato under field conditions. Plant growth and development of field-grown tomato, and fruit yields, will be outlined and compared to model predictions for a number of locations in Florida, nitrogen fertilizer rates, and irrigation management practices. Possible application of the model to quantify effects of crop management on crop production will be discussed using simulated yield values for a wide range of environmental conditions.


2015 ◽  
Vol 25 (3) ◽  
pp. 330-334 ◽  
Author(s):  
Brian Ward ◽  
Powell Smith ◽  
Susan James ◽  
Zachary Stansell ◽  
Mark Farnham

Increased demand for fresh market crown-cut broccoli (Brassica oleracea var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern markets. Thus, a plant density study was carried out in Fall 2012 and 2013 using the hybrid cultivar Emerald Crown on a commercial farm in Summerton, SC, and in Fall 2013 using ‘Emerald Crown’ and another hybrid, ‘Durapak 19’, on a research farm in Charleston, SC. The objective was to determine the effect of variable within-row spacings of 4, 6, and 8 inches (using a system with double rows spaced 12-inches apart) on marketable yields and quality in the three environments. Our results indicated that increasing plant density by reducing within-row spacing to 4 inches significantly increased overall yield per hectare over the 6- and 8-inch spacing treatments at two of three environments. Stem diameter and average head weight were unaffected by plant density; however, heads harvested from plots with the highest plant densities had significantly (P < 0.01) lower bead uniformity in the Summerton 2012 trial, and significantly (P < 0.05) larger bead size in the two trials conducted in 2013. In general, the highest total marketable yields were from the 4-inch within-row spacing, but increased competition at the highest density may increase the risk of plants producing heads with lower quality characteristics. With the increased risk of producing lower quality marketable heads along with the increased production costs associated with the 4-inch spacing, yield and head quality attributes may be optimized at the 6-inch within-row spacing.


HortScience ◽  
2018 ◽  
Vol 53 (9) ◽  
pp. 1372-1378 ◽  
Author(s):  
Ibukun T. Ayankojo ◽  
Kelly T. Morgan ◽  
Monica Ozores-Hampton ◽  
Kati W. Migliaccio

Florida is the largest fresh-market tomato (Solanum lycopersicum L.)–producing state in the United States. Although vegetable production requires frequent water supply throughout the crop production cycle to produce maximum yield and ensure high-quality produce, overirrigation can reduce crop yield and increase negative environmental consequences. This study was conducted to evaluate and compare irrigation schedules by a real-time and location-specific evapotranspiration (ET)-based SmartIrrigation Vegetable App (SI) with a historic ET-based schedule (HI). A field study was conducted on drip-irrigated, fresh-market tomato during the Fall of 2015 and Spring of 2016 on a Florida sandy soil. The two scheduling methods (SI and HI) were evaluated for irrigation water application, plant biomass accumulation, nutrient uptake and partitioning, and yield in open-field tomato production. Treatments included 100% HI (T1); 66% SI (T2); 100% SI (T3); and 150% SI (T4). Treatments were arranged in a randomized complete block design with four replicates per treatment during the two production seasons. In both seasons, depth of irrigation water applied increased in the order of T2 < T3 < T1 < T4. Total water savings was greater for T3 schedule compared with T1 schedule at 22% and 16% for fall and spring seasons, respectively. No differences were observed among treatments for tomato biomass accumulation at all sampling periods during both seasons. However, T3 resulted in significantly greater total marketable yield compared with other treatments in both seasons. The impact of irrigation application rate was greater in fruit and leaf nitrogen accumulation compared with that of stem and root biomass. Based on the plant performance and water savings, this study concludes that under a sandy soil condition, a real-time location-specific irrigation scheduler improves irrigation scheduling accuracy in relation to actual crop water requirement in open-field tomato production.


2017 ◽  
Author(s):  
John Moran ◽  
Philip Chamberlain

Blueprints for Tropical Dairy Farming provides insight into the logistics, infrastructure and management required for the development of small and large dairy farms in tropical developing countries. Farmers will learn how to improve the welfare, milk quality and productivity of their dairy herds. This book complements author John Moran’s five previous books on the principles of tropical dairy farming. The manual covers a wide range of topics related to ensuring the sustainability of dairy production systems in tropical developing countries, such as South and East Asia, Africa and Central America. It also provides guidelines for the best management practices of large-scale, more intensive dairy systems. While smallholder farms are the major suppliers of milk in the tropics, many larger farms are becoming established throughout the tropics to satisfy the increasing demands for fresh milk. Blueprints for Tropical Dairy Farming will be a valuable resource for farmers and stockpeople who want to improve the productive performance of their dairy herds, farm advisers who can assist farmers to achieve this aim, educators who develop training programs for farmers or who train dairy advisers in the basics of dairy production technology, and other stakeholders in tropical dairy production, such as local agribusiness, policy makers and research scientists. National and international agencies will learn new insights into the required long-term logistics for regional dairy development, while potential investors will acquire knowledge into intensive tropical dairy farming.


Author(s):  
C. Morrow ◽  
G. Rochau ◽  
J. Cash ◽  
D. King

The United States Department of Energy, Nuclear Energy Research Initiative (NERI) Direct Energy Conversion (DEC) project began in August of 1998 with the goal of developing a direct energy conversion process suitable for commercial development. With roughly two thirds of the project completed, we believe a viable direct energy device could be economic. This paper describes the financial basis behind that belief for one proposed DEC reactor, the magnetically insulated fission electric cell (FEC). It also illustrates the value of economic analysis even in these early phases of a research project. The financial basis consists of a conceptual level Economic Model comprised of five modules. The Design Model provides technical specification to other modules. The Fuel Cost Model estimates fuel expenses based on current spot market prices applied over a wide range of fuel enrichment. The Operating Cost Model uses published correlations to provide rough order of magnitude non-fuel operating costs. The Capital Cost model uses analogy and parametric estimating techniques to generate capital cost estimates for a DEC power plant. Finally, the financial model combines output from the other models to produce a Net Present Value analysis with cost of generation as the independent variable. Model results indicate that several FEC geometric configurations could be economic. Within these configurations, optimums exist. Finally, the model demonstrates that the most efficient design is not necessarily the most economic.


Author(s):  
William M. Tsutsui

Tracking with Japan’s macroeconomic fortunes since World War II, global interest in Japanese management practices emerged in the 1950s with the start of Japan’s “miracle economy,” soared in the 1980s as Japanese industrial exports threatened manufacturers around the world, and declined after 1990 as Japan’s growth stalled. Japanese techniques, especially in labor and production management, fascinated Western scholars and practitioners in their striking divergence from U.S. and European conventions and their apparent advantages in creating harmonious, highly productive workplaces. Two reductive approaches to the origins of Japan’s distinctive management methods―one asserting they were the organic outgrowth of Japan’s unique cultural heritage, the other stressing Japan’s proficiency at emulating and adapting American models—came to dominate the academic and popular literature. As historical analysis reveals, however, such stylized interpretations distort the complex evolution of Japanese industrial management over the past century and shed little light on the current debates over the potential convergence of Japanese practices and American management norms. Key features of the Japanese model of labor management—“permanent” employment, seniority-based wages and promotions, and enterprise unions—developed between the late 1800s and the 1950s from the contentious interaction of workers, managers, and government bureaucrats. The distinctive “Japanese Employment System” that emerged reflected both employers’ priorities (for low labor turnover and the affirmation of managerial authority in the workplace) and labor’s demands (for employment security and respect as full members of the firm). Since 1990, despite the widespread perception that Japanese labor management is inefficient and inflexible by international standards, many time-honored practices have endured, as Japanese corporations have pursued adaptive, incremental change rather than precipitous convergence toward a more market-oriented American model. The distinguishing elements of Japanese production management—the “lean production” system and just-in-time manufacturing pioneered in Toyota factories, innovative quality-control practices—also evolved slowly over the first century of Japanese industrialization. Imported management paradigms (especially Frederick Taylor’s scientific management) had a profound long-term impact on Japanese shop-floor methods, but Japanese managers were creative in adapting American practices to Japan’s realities and humanizing the rigid structures of Taylorism. Japanese production management techniques were widely diffused internationally from the 1980s, but innovation has slowed in Japanese manufacturing in recent decades and Japanese firms have struggled to keep pace with latest management advances from the United States and Europe. In sum, the histories of Japanese labor and production management cannot be reduced to simple narratives of cultural determinism, slavish imitation, or inevitable convergence. Additional research on Japanese practices in a wide range of firms, industries, sectors, regions, and historical periods is warranted to further nuance our understanding of the complex evolution, diverse forms, and contingent future of Japanese management.


Agriculture ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 129 ◽  
Author(s):  
Ifeoluwa Adesina ◽  
Arnab Bhowmik ◽  
Harmandeep Sharma ◽  
Abolghasem Shahbazi

Hemp (Cannabis sativa L.) is an emerging high-value specialty crop that can be cultivated for either fiber, seed, or cannabidiol (CBD). The demand for hemp and its products has been consistently on the rise in the 21st century. The United States of America (USA) has reintroduced hemp and legalized its production as an agricultural commodity through the 2018 Federal Farm Bill. Although there is a renewed interest in the adoption of hemp due to the emerging market, its production in the United States (US) remains limited partly because of unclear agronomic guidance and fertilization recommendations. This review article provides information on the current agronomic management practices that are available in the literature and identifies the future research needs for cultivating this multipurpose crop to address the growing market demands. Hemp production could be beneficial if managed properly. Hemp fertilizer requirements vary in accordance with the type of hemp grown (seed, fiber, or CBD), soil, environmental conditions and requires a wide range of macro- and micronutrients. Integrating management practices in hemp cultivation intended to build soil health is promising since the hemp cropping system is suitable for crop rotation, cover cropping, and livestock integration through animal waste applications. Hemp also has significant environmental benefits since it has the potential to remediate contaminated soils through phytoremediation, convert high amounts of atmospheric CO2 to biomass through bio-sequestration, and hemp biomass for bioenergy production. This review identifies that most of the agronomic research in the past has been limited to hemp fiber and, to some extent, hemp seed but not CBD hemp. With the increase in the global markets for hemp products, more research needs to be conducted to provide agronomic guidelines for sustainable hemp production.


Author(s):  
ARNAB BHOWMIK

Hemp (Cannabis sativa L.) is an emerging high-value specialty crop that can be cultivated foreither fiber, seed, or cannabidiol (CBD). The demand for hemp and its products has been consistently onthe rise in the 21st century. The United States of America has reintroduced hemp and legalizedits production as an agricultural commodity through the 2018 Federal Farm Bill. Although thereis a renewed interest in the adoption of hemp due to the emerging market, its production in theUnited States remains limited partly because of unclear agronomic guidance and fertilizationrecommendations. This review article provides information on the current agronomic managementpractices that are available in the literature and identifies the future research needs for cultivating thismultipurpose crop to address the growing market demands. Hemp production could be beneficialif managed properly. Hemp fertilizer requirements vary in accordance with the type of hempgrown (seed, fiber, or CBD), soil, environmental conditions and requires a wide range of macro- andmicronutrients. Integrating management practices in hemp cultivation intended to build soil health ispromising since the hemp cropping system is suitable for crop rotation, cover cropping, and livestockintegration through animal waste applications. Hemp also has significant environmental benefitssince it has the potential to remediate contaminated soils through phytoremediation, convert highamounts of atmospheric CO2 to biomass through bio-sequestration, and hemp biomass for bioenergyproduction. This review identifies that most of the agronomic research in the past has been limitedto hemp fiber and, to some extent, hemp seed but not CBD hemp. With the increase in the globalmarkets for hemp products, more research needs to be conducted to provide agronomic guidelinesfor sustainable hemp production.


Sign in / Sign up

Export Citation Format

Share Document