scholarly journals Field Performance of Micropropagated, Own-rooted Peach Trees

1991 ◽  
Vol 116 (6) ◽  
pp. 1089-1091 ◽  
Author(s):  
F.A. Hammerschlag ◽  
R. Scorza

Four peach [Prunus persica (L.) Batsch] scion cultivars, `Jerseyqueen', `Redskin', `Suncrest', and `Sunhigh', that were propagated by tissue culture techniques and by bud-grafting onto `Lovell' seedlings, were compared at Kearneysville, W.Va., and at Beltsville, Md. At Kearneysville, total fruit production was higher for tissue-cultured (TC) trees when compared with budded trees in the first 3 years of fruiting, whereas trunk diameter increases were generally larger for budded trees. In the following year, fruit production was similar for both TC and budded trees, although trunk diameter increases continued to be larger for budded trees. At Beltsville, fruit production was significantly higher for TC trees in 1987, the first fruiting season, but the same for both in the second season. Trunk diameter increases were larger for budded trees both years. Differences in tree growth and productivity in the early years of orchard establishment appeared to be related to the size of plants that were planted. Budded trees, which were smaller than TC trees at planting, increased in size faster than TC trees but were less productive. Crop efficiency was cultivar-specific, but differences among cultivars was less if trees were TC propagated. These results suggested that based on yield and growth, own-rooted TC trees should be an acceptable tree type for commercial orchards.

2017 ◽  
Vol 52 (11) ◽  
pp. 1006-1016 ◽  
Author(s):  
Paula Duarte de Oliveira ◽  
Gilmar Arduino Bettio Marodin ◽  
Gustavo Klamer de Almeida ◽  
Mateus Pereira Gonzatto ◽  
Daniel Chamorro Darde

Abstract: The objective of this work was to evaluate the effect of shoot heading and of hand thinning in different development stages of flowers and fruits on the fruit production and quality of 'BRS Kampai' peach (Prunus persica) trees. The experiment was performed during three crop years, under the conditions of the “Depressão Central” region in the state of Rio Grande do Sul, Brazil, and the treatments were: T1, heading of half of the mixed shoot; T2, heading of one third of the mixed shoot; T3, flower thinning in the pink bud stage; T4, thinning at full bloom; T5, thinning of fruit with 5 mm; T6, thinning of fruit with 20 mm; and T7, no thinning or heading (control). Fruit production and quality were evaluated. Plants with no thinning were more productive, but showed high frequency of fruits with a diameter smaller than 60 mm. Shoot heading reduced production per tree and resulted in small-sized fruit. Thinning time did not affect production, and fruit size was greater when thinning was performed at the bloom stage. 'BRS Kampai' peach trees can be thinned starting at bloom, which provides greater fruit size, with no production loss.


2009 ◽  
Vol 134 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Dongyan Hu ◽  
Ralph Scorza

Since the first report of the ‘A72’ semidwarf peach [Prunus persica (L.) Batsch] tree in 1975, no new information has become available on this genotype. We evaluated the growth habit and verified the inheritance of ‘A72’ in a population of 220 progeny derived from self-pollination. Detailed tree and branch measurements revealed a unique forked-branch (FBR) character of the ‘A72’ (Nn) phenotype. The progeny segregated into 1 NN:2 Nn:1 nn. NN trees were indistinguishable from standard peach trees, Nn were FBR, and nn were dwarf. Hybrids between ‘A72’ and columnar (brbr) peach trees confirmed that FBR is inherited as a monogenic trait that appears to express incomplete dominance. ‘A72’ (Nn) trees were later blooming than sibling NN trees. The relationship (linkage or pleiotropy) between the growth habit of ‘A72’ and late bloom is not known. The structure of ‘A72’ trees presents new opportunities to breeder/geneticists, physiologists, and horticulturists to further explore the plasticity of peach tree growth and architecture that can be achieved through breeding. Applications of the ‘A72’ growth habit for commercial fruit production and as an ornamental, particularly in the dwarf form (nn) and in combination with the columnar tree (brbr) form, present opportunities that await exploration.


HortScience ◽  
1993 ◽  
Vol 28 (10) ◽  
pp. 1021-1023
Author(s):  
Jeffrey F. Derr

The tolerance of newly planted apple (Malus domestica Borkh.) and peach [Prunus persica (L.) Batsch] trees to the postemergence herbicide triclopyr was evaluated infield trials. Apple and peach trees were not injured by triclopyr applied at rates ranging from 0.28 to 1.12 kg acid equivalent (a.e.)/ha as a directed spray to soil. No injury was observed following direct application of 10 ml of a triclopyr solution at 2 g a.e./liter to the lower bark of either tree species. Applications of that solution to an individual branch injured or killed the treated apple or peach branch but did not affect the rest of the tree. No reduction in tree growth or injury was noted 1 year after triclopyr application. Applications of 10 ml of a glyphosate solution at 15 g a.i./liter to an apple branch caused severe injury and a growth reduction by 1 year after application, and killed all treated peach trees when applied to one branch. No triclopyr or 2,4-D treatment had affected apple or peach trunk diameter, number of branches, or tree size 1 year after application. Chemical names used: N-(phosphonomethyl)glycine (glyphosate); [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid (triclopyr); (2,4-dichlorophenoxy)acetic acid (2,4-D).


HortScience ◽  
2003 ◽  
Vol 38 (6) ◽  
pp. 1141-1143 ◽  
Author(s):  
T.G. Beckman ◽  
P.L. Pusey ◽  
P.F. Bertrand

Peach tree fungal gummosis caused by Botryosphaeria dothidea [(Moug.:Fr.) Cos & de Not.] is widespread throughout the southeastern United States. Until recently, its economic impact on peach [Prunus persica (L.) Batsch] has been impossible to estimate, since no effective controls were known. Significant, though not total, suppression of gummosis on `Summergold' peach trees was achieved with an intensive 5-year spray program with captafol. Captan was far less effective than captafol. Both trunk diameter and fruit yield were negatively correlated with disease severity. After eight growing seasons, trees treated with captafol were 18% larger than the untreated trees. Yield of mature captafol-treated trees was 40% to 60% high er than that of untreated ones. Following termination of the spray program after 5 years, disease severity gradually increased on both captafol- and captan-treated trees. However, through eight growing seasons, disease severity was significantly lower on captafol-treated trees. This study demonstrates that peach tree fungal gummosis significantly depresses tree growth and fruit yield on susceptible peach cultivars.


2004 ◽  
Vol 44 (12) ◽  
pp. 1225
Author(s):  
C. G. Tsipouridis ◽  
A. Isaakidis ◽  
A. Manganaris ◽  
I. Therios ◽  
Z. Michailidis

Ten peach and nectarine (Prunus persica L. Batsh) cultivars: Arm King, Early Crest, Early Gem, Flavor Crest, May Crest, May Grand, Red Gold, Red Haven, Spring Crest and Sun Crest, were propagated by both hardwood cuttings (HC) and by bud grafting onto peach seedlings. Significant differences were observed for rooting among cultivars and applied IBA. Degree of blooming and yield were higher for HC propagated own-rooted trees when compared with budded trees in the first 6 years of fruiting. Budded trees increased in size faster than HC trees but were less productive. Yield, yield efficiency and fruit size were not only cultivar specific, but were also affected by the propagation method, being higher for own-rooted trees in most cultivars. Tree mortality was generally higher for budded trees. No significant differences were found in mineral absorption efficiency, time of blooming, fruit firmness, acidity and sugar level between own-rooted and budded trees. Results based on percent rooting of HC, yield, fruit size, growth and tree mortality suggest that own-rooted HC trees should be an acceptable tree type for commercial orchards, especially for the cultivars Sun Crest, Spring Crest and Red Haven.


HortScience ◽  
2021 ◽  
pp. 1-10
Author(s):  
Sudip Kunwar ◽  
Jude Grosser ◽  
Fred G. Gmitter ◽  
William S. Castle ◽  
Ute Albrecht

Most of the commercially important citrus scion cultivars are susceptible to Huanglongbing (HLB), which is the most devastating disease the citrus industry has ever faced. Because the rootstock can influence the performance of the scion in various ways, including disease and pest tolerance, use of superior rootstocks can assist citrus growers with minimizing the negative effects of HLB. The objective of this study was to assess rootstock effects on the horticultural performance and early production potential of ‘Hamlin’ sweet orange (Citrus sinensis) trees in commercial field settings under HLB-endemic conditions. Two field trials were conducted in different locations in Central and Southeast Florida. The trials were established in 2015 and included 32 diverse diploid and tetraploid rootstock cultivars and advanced selections. One trial was performed in Highlands County, FL, on a poorly drained flatwoods-type site. Another trial was performed in Polk County, FL, on a well-drained sandy Central Florida Ridge site. Horticultural traits including tree height, canopy volume, trunk diameter, canopy health, leaf nutrient content, yield, and fruit quality were assessed during the 2018–19 and 2019–20 production years. Significant differences were found among trees on different rootstocks for most of the measured traits, particularly tree vigor and productivity, but rootstock effects also varied by location. Rootstocks that induced large tree sizes, such as the diploid mandarin × trifoliate orange hybrids ‘X-639’, ‘C-54’, ‘C-57’, and ‘C-146’, also induced higher yield, but with lower yield efficiency. Most of the tetraploid rootstocks significantly reduced tree size, among which ‘Changsha+Benton’, ‘Green-3’, ‘Amb+Czo’, ‘UFR-3’, and ‘UFR-5’ induced high yield efficiency. Therefore, these rootstocks have the potential to be used in high-density plantings. However, trees on some of these small size-inducing rootstocks had a higher mortality rate and were more vulnerable to tropical force winds. This study provides important information for the selection of rootstocks with the greatest production potential in an HLB-endemic environment, especially during the early years of production.


HortScience ◽  
2002 ◽  
Vol 37 (7) ◽  
pp. 1049-1052 ◽  
Author(s):  
B.S. Wilkins ◽  
R.C. Ebel ◽  
W.A. Dozier ◽  
J. Pitts ◽  
D.J. Eakes ◽  
...  

Twelve peach [Prunus persica (L.) Batsch] seedling rootstocks [Lovell, Nemaguard, Flordaguard, 14DR51, five Guardian™ (BY520-9) selections, and three BY520-8 selections] budded with `Cresthaven' were planted in 1994 and evaluated through 2000 to determine performance under commercial management practices. Mesocriconema xenoplax population densities were above the South Carolina nematicide treatment threshold of 50 nematodes/100 cm3 of soil after 1996. However, symptoms of peach tree short life (PTSL) were not observed. Tree mortality was less than 14% through 1999, with most of the dead trees exhibiting symptoms consistent with Armillaria root rot. About 13% of the surviving trees in 1999 were removed in 2000 due to symptoms of phony peach. There were no differences in tree mortality among rootstocks. Tree growth, photosynthesis, and suckering varied among rootstocks, but leaf conductance, internal CO2, and leaf transpiration did not. Foliar calcium, magnesium, iron, and phosphorus varied among rootstocks, but all were within the range considered sufficient for peach trees. Fruit yield varied among rootstocks, but yield efficiency did not, indicating that higher yield corresponded with larger trees. Bloom date did not vary among rootstocks, but harvest date was advanced as much as 2 days for some rootstocks, compared to Lovell. Fruit weight varied among rootstocks but skin color, flesh firmness, and soluble solids content were similar. All rootstocks performed satisfactorily for commercial peach production.


2018 ◽  
pp. 47-52

Epimedium elatum (Morren & Decne) of family Berberidaceace is a rare perennial medicinal plant, endemic to high altitude forests of Northwestern Himalayas in India. Ethnobotanically, it has been used as an ingredient for treatment of bone-joint disorders, impotence and kidney disorders in Kashmir Himalayas. Phytochemically, it is rich in Epimedin ABC and Icariin; all of these have been demonstrated to possess remarkable biological activities like PDE-5 inhibition (treatment of erectile dysfunction), anticancer, antiosteoporosis antioxidant and antiviral properties. The present investigation reports its traditional usage, comprehensive distribution and conservation status from twenty ecogeographical regions in Kashmir Himalayas, India. The species was reported from Gurez valley for the first time. Numerous threats like excessive grazing, deforestration, habitat fragmentation, tourism encroachment, landslides and excessive exploitation have decreased its natural populations in most of the surveyed habitats. Consequently, its existence may become threatened in near future if timely conservation steps are not taken immediately by concerned stakeholders involved in medicinal plant research. Moreover, use of plant tissue culture techniques is recommended for development of its in vitro propagation protocols. Therefore, introduction of this medicinal plant in botanical gardens, protected sites and development of monitoring programmes are needed for its immediate conservation in Northwestern Himalayas, India.


Weed Science ◽  
1985 ◽  
Vol 33 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Stephen C. Weller ◽  
Walter A. Skroch ◽  
Thomas J. Monaco

Field experiments conducted over a 2-yr period demonstrated that common bermudagrass [Cynodon dactylon (L.) Pers. # CYNDA] inhibited growth of newly planted peach (Prunus persica L. ‘Norman’) trees. Common bermudagrass densities of 100, 75, 50, and 25% ground cover reduced tree fresh weight by 86, 64, 43, and 19%, respectively, the first year (1978) and 87, 62, 44, and 28%, respectively, the second year (1979) after planting. Tree trunk diameter relative growth rate (RGR) was reduced by 75 and 100% common bermudagrass ground cover densities at all measurement dates only in 1978. Tree leaf N and K were reduced in both years by common bermudagrass; however, only at the 100% common bermudagrass density in 1978 was N at a deficient level. Leaf chlorophyll was reduced in trees grown in all densities of common bermudagrass only in 1978. Reduced tree growth cannot be explained entirely by competition for essential nutrients; thus an allelopathic effect of the bermudagrass on young peach roots is suspected.


1994 ◽  
Vol 8 (4) ◽  
pp. 840-848 ◽  
Author(s):  
Chester L. Foy ◽  
Susan B. Harrison ◽  
Harold L. Witt

Field experiments were conducted at two locations in Virginia to evaluate the following herbicides: alachlor, diphenamid, diuron, metolachlor, napropamide, norflurazon, oryzalin, oxyfluorfen, paraquat, pendimethalin, and simazine. One experiment involved newly-transplanted apple trees; the others, three in apple and one in peach trees, involved one-year-old trees. Treatments were applied in the spring (mid-April to early-May). Control of annual weed species was excellent with several treatments. A broader spectrum of weeds was controlled in several instances when the preemergence herbicides were used in combinations. Perennial species, particularly broadleaf species and johnsongrass, were released when annual species were suppressed by the herbicides. A rye cover crop in nontreated plots suppressed the growth of weeds. New shoot growth of newly-transplanted apple trees was increased with 3 of 20 herbicide treatments and scion circumference was increased with 11 of 20 herbicide treatments compared to the nontreated control. Growth of one-year-old apple trees was not affected. Scion circumference of one-year-old peach trees was increased with 25 of 33 herbicide treatments.


Sign in / Sign up

Export Citation Format

Share Document