scholarly journals Inheritance and Phenocopy of a Red Beet Gibberellic Acid-deficient Dwarf Mutant

1997 ◽  
Vol 122 (3) ◽  
pp. 315-318 ◽  
Author(s):  
I.L. Goldman ◽  
J.F. Watson

A severe dwarf mutant affecting vegetative and reproductive growth arose spontaneously in our red beet (Beta vulgaris L. subsp. vulgaris) breeding nursery and was used in crosses with inbred lines to characterize its inheritance. Segregation data in backcross and F2 generations were collected. Chi-square goodness-of-fit tests did not deviate significantly from the expected ratios for a monogenic character for each genetic background-generation combination. We propose the symbol dw to describe the genetic control of this dwarf phenotype. Greenhouse experiments were conducted to determine whether the mutant was sensitive to exogenous application of gibberellic acid (GA). GA3 and GA4/7 in concentrations of 0 to 1000 ppm were applied to apical meristems during flower stem development in vernalized dwarf plants. Data on flower stem length and leaf length were collected over a 6-week period during reproductive growth. Recovery of wild-type flower stem length was obtained with application of both types of GA. A 30-fold increase in flower stem length over untreated plants was accomplished by GA application. Results of these phenocopy experiments suggest the mutant gene is involved in GA synthesis.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 527f-528
Author(s):  
I.L. Goldman

A fasciated flower stem character arose spontaneously during development of the red beet (Beta vulgaris L.) inbred line W411. The fasciated character is manifest by a flattened flower stem with petioles coalesced into a twisted, ribbonlike appearance. No fasciation is present in the vegetative stem or petioles. An inheritance study was conducted to determine the genetic control of flower stem fasciation. The inbred line W411 was used both as a male and female parent in crosses with four red beet inbred lines. Segregating progenies in both the BC1 and F2 generations were developed and scored for the fasciated flower stem character. Variable expression of the fasciated flower stem phenotype was observed in these progenies; however, the presence of flattened flower stems at the stem/hypocotyl junction was unequivocal. Chi-square goodness-of-fit tests in both the BC1 and F2 generations did not deviate significantly from expected ratios for a monogenic recessive character for each genetic background. No reciprocal differences were detected for any cross in this group of four inbred lines, which suggests the lack of maternal effect for the fasciated character. The symbol ffs is proposed to describe the genetic control of the fasciated flower stem phenotype.


1998 ◽  
Vol 123 (4) ◽  
pp. 632-634 ◽  
Author(s):  
I.L. Goldman

A fasciated flower stem character arose spontaneously during development of the red beet (Beta vulgaris L.) inbred line W411. The fasciated character is manifest by a flattened flower stem with petioles coalesced into a twisted, ribbonlike appearance. No fasciation is present in the vegetative stem or petioles. An inheritance study was conducted to determine the genetic control of flower stem fasciation. The inbred line W411 was used both as a male and female parent in crosses with four red beet inbred lines. Segregating progenies in both the BC1 and F2 generations were developed and scored for the fasciated flower stem character. Variable expression of the fasciated flower stem phenotype was observed in these progenies; however, the presence of flattened flower stems at the stem-hypocotyl junction was unequivocal. Chisquare goodness-of-fit tests in the BC1 and F2 generations did not deviate significantly from expected ratios for a monogenic recessive character for each genetic background. No reciprocal differences were detected for any cross in this group of four inbred lines, which suggests the lack of maternal effect for the fasciated character. The symbol ffs is proposed to describe the genetic control of the fasciated flower stem phenotype.


HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1167-1171 ◽  
Author(s):  
Lindsay J. Davies ◽  
Ian R. Brooking ◽  
Jocelyn L. Catley ◽  
Elizabeth A. Halligan

Tubers of Sandersonia aurantiaca Hook. were soaked in 1000 mg·L-1 GA3, 20 mg·L-1 uniconazole, 200 mg·L-1 benzyladenine, or water for 2 hours and then sprouted at 12, 18, or 24 °C. The effects of these treatments on flower stem quality were then determined at forcing temperatures of 18, 24, or 30 °C. Stem length increased with sprouting temperature only at a forcing temperature of 18 °C. Floret numbers increased with sprouting temperature at all forcing temperatures, but the effect was greatest at the 18 °C forcing temperature. The 12 °C sprouting treatment reduced floret numbers at all forcing temperatures. Soaking tubers in GA3 increased stem length but drastically reduced floret numbers, while soaking in uniconazole reduced stem length but had no significant effect on floret numbers. Soaking in BA strongly promoted branching, which resulted in large increases (>30%) in floret numbers per stem with little change in stem length. Of the three growth regulators, only BA was effective in improving cut flower stem quality. Chemical names used: gibberellic acid (GA3); (E)-(+)-(S)-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pent-1-ene-3 -ol (uniconazole); N6-benzylamino purine (benzyladenine; BA).


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 624e-624
Author(s):  
I.L. Goldman

Few genes have been identified in red beet. A spontaneously occurring dwarf mutant was identified in the late 1970s and again in 1994 in several breeding populations. Mutant plants are characterized by extreme dwarfing of both root and shoot. Young leaves are narrow, thin and strap-like while older leaves are thicker and deeply veined. The shoot axis forms a compressed rosette. Neither the shoot axis nor the root axis of field-grown plants exceeds 3 cm in height. Genetic analysis of F2 and backcross populations revealed the dwarf phenotype is conditioned by a single recessive gene. Several experiments were conducted to determine if the dwarf phenotype was due to a lack of gibberellic acid (GA) production. Exogenous application of GA3 at concentrations ranging from 1 to 1000 ppm on dwarf plants a) following seeding and b) during reproductive growth revealed a linear increase in plant height. Control dwarf plants receiving a water-only treatment were 18% as tall as plants receiving regular application of 1000 ppm GA3. A wild-type phenotype during reproductive growth was recoverable following regular GA3 application.


2016 ◽  
Vol 26 (3) ◽  
pp. 287-292 ◽  
Author(s):  
Ben A. Bergmann ◽  
John M. Dole ◽  
Ingram McCall

Increasing cut stem length and reducing crop production time are producers’ goals for numerous cut flower species. One or both of these aims was met in several field-grown cultivars through foliar application of gibberellic acid (GA3), but effectiveness varied by cultivar, application rate, and timing. Of the 13 cultivars tested, stem length was increased in nine cultivars [Toreador Red celosia (Celosia argentea), Camelot White foxglove (Digitalis purpurea), Imperial Giants Pink Perfection larkspur (Larkspur hybrids), Compliment mix lobelia (Lobelia hybrids), Nippon Taka ornamental pepper (Capsicum annuum), Amazon Neon Duo and Bouquet Purple sweet william (Dianthus hybrids), Summer Pastels yarrow (Achillea millefolium), and Benary’s Giant Scarlet zinnia (Zinnia elegans)], and time to harvest was decreased in four cultivars [High Tide White ageratum (Ageratum houstonianum), lobelia, ornamental pepper, and zinnia], when GA3 was applied as a foliar spray. Concentrations of 400, 800, and 1600 mg·L−1 GA3 were most effective. Application of GA3 resulted in malformed or smaller flowers or lighter green foliage in foxglove, lobelia, sweet william, and zinnia. In most cases, only one application was tested, and greatest response to GA3 was observed during 3–6 weeks post application. Gibberellic acid did not influence stem length in three cultivars [High Tide White ageratum, Aurora Deep Purple delphinium (Delphinium hybrids), and Column Lilac Lavender stock (Matthiola incana)], and decreased flower stem length in one cultivar (High Tide Blue ageratum). Four cultivars were identified as good candidates for further research given their promising responses to GA3 treatments.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 654-658 ◽  
Author(s):  
C. M. Grieve ◽  
J.A. Poss ◽  
S.R. Grattan ◽  
P.J. Shouse ◽  
J.H. Lieth ◽  
...  

To explore the possibility that saline wastewaters may be used to grow commercially acceptable floriculture crops, a study was initiated to determine the effects of salinity on two statice cultivars. Limonium perezii (Stapf) F. T. Hubb. `Blue Seas' and L. sinuatum (L.) Mill `American Beauty' were grown in greenhouse sand cultures irrigated with waters prepared to simulate saline drainage waters typically present in the western San Joaquin Valley (SJV) of California. Seven salinity treatments were imposed on 3-week-old seedlings. Electrical conductivities of the irrigation waters (EC) were 2.5 (control), 7, 11, 15, 20, 25, and 30 dS·m–1. Vegetative shoots were sampled for biomass production and ion analysis ten weeks after application of stress. Flower stem numbers, length, and weight were determined at harvest. Stem length of L. perezii was significantly reduced when irrigation water salinity exceeded a threshold of 2.5 dS·m–1. Salt tolerance threshold based on stem length for L. sinuatum was 7 dS m-1. The species exhibited significant differences in shoot-ion relations which appear to be related to differences in salt tolerance. Sodium, K+, Mg2+, and total-P were more strongly accumulated in the leaves of L. sinuatum than L. perezii. Both species accumulated K+ in preference to Na+, but selectivity for K+ over Na+ was significantly higher in L. sinuatum than in the more salt-sensitive L. perezii. Chloride concentration in L. sinuatum leaves increased significantly as salinity increased, whereas the 20-fold increase in substrate-Cl had no effect on leaf-Cl in L. perezii. Both Limonium species completed their life cycles at salt concentrations exceeding 30 dS·m–1, a character associated with halophytic plants. Maximum growth of each species, however, occurred under relatively low salt stress, and steadily declined as external salinity increased. Based on this crop productivity response, L. perezii should be rated as sensitive and L sinuatum as moderately tolerant.


2018 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Dhiman Das ◽  
Asim Kumar Bhadra ◽  
Mohd Moniruzzaman

A field experiment was conducted at the research field of Sher-e- Bangla Agricultural University, Dhaka during the period from December 1, 2016 to January 11, 2017 to investigate the effect of gibberellic acid (GA3) on vegetative growth, morphological attributes and foliage (leaf) yield of coriander (Coriandrum sativum L.). The experimental treatments consisted of eight different doses of GA3 viz., 0 (distilled water spray), 5, 10, 15, 20, 25, 30 and 35 ppm. The variety Rosina (Pahuja Co., India) was used as planting material and different doses of GA3 were applied on the plants at 25 and 30 days after sowing. The experiment was laid out in Randomized Complete Block Design with three replications. GA3 had significant effect on vegetative growth, morphology, foliage yield and yield contributing characters of coriander. Plant height, number of leaves plant-1, leaf length, plant spread and single plant weight were found maximum from the application of GA3 at 20 ppm, which was closely followed by 25 ppm GA3. Application of GA3 at 20 ppm produced the highest weight of foliage m-2. A strong positive correlation of foliage yield was observed with plant height, number of leaves plant-1, leaf length, plant spread, single plant weight and weight of foliage m-2. Application of GA3 at 20 ppm gave maximum foliage yield (9.34 t ha-1) which was followed by GA3 at 15 ppm (8.46 t ha-1) and 25 ppm (8.06 t ha-1), and the minimum foliage yield was recorded from control (distilled water spray) (4.90 t ha-1). Application of GA3 at 20 ppm increased foliage yield over control by 47.54 %. A quadratic relationship between applied GA3 concentration and foliage yield was found; the regression equation was y = 4.87 + 0.375x – 0.009x2 from which it came up to be optimum dose of GA3 as 20.83 ppm.Res. Agric., Livest. Fish.5(1): 1-9, April 2018


2018 ◽  
Vol 24 (3) ◽  
pp. 255-260
Author(s):  
Carlos Eduardo Ferreira de Castro ◽  
Ana Cecilia Ribeiro Castro ◽  
Charleston Gonçalves ◽  
Vivian Loges

Many species of Zingiber have great ornamental potential, due to durability and exotic appearance of the inflorescences. Despite its large phenotypic variability, they are scarcely exploited or not yet exploited regarding the ornamental potential. To conserve potential ornamental genotypes, and subsidize breeding program, the Agronomic Institute (IAC) maintain a Germoplasm Collection of Ornamental Zingiberales with promising accessions, including Zingiber. The aim was the morphophenological characterization of ten Zingiber accessions and the indication for landscape purposes. A large variation was observed to the evaluated characters: Clump height (CH); Inflorescence visualization (IV); Clump area (CA); Clump density (CD); Leaf stem Firmness (LSF); Number of leaf stems per clump (NLSC); Number of leaves per stem (NLS); Leaf color (LCol); Evergreen tendency (ET); Flower stem growth (FSG); Flower stem length (FSLe); Flower stem diameter (FSD); Flower stem per clump (FSC); Color sensorial perception (CSP); Flower stem weight (FSW); Inflorescence length (IL); Inflorescence diameter (ID); Bracts aspects (BAs); and Flowering season (FSe). The accessions very suitable and with the best performance to use for landscape purpose were Z. spectabile, IAC Anchieta (Z. spectabile), Z. newmanii.


2011 ◽  
Vol 57 (No. 11) ◽  
pp. 499-504 ◽  
Author(s):  
J.G. Zaller ◽  
F. Saccani ◽  
T. Frank

  Both earthworms and symbiotic arbuscular mycorrhizal fungi (AMF) often co-occurr in ecosystems, however very little is known on their interrelationships. Here we tested to what extent earthworms (Annelida) or AMF (Glomales) separately or in combination affect the growth of the pharmaceutical plant species, pot marigold (Calendula officinalis, Asteraceae). We conducted a greenhouse experiment using non-sterilized field soil where we manipulated the factors earthworms (addition/no addition of the vertical burrowing species Lumbricus terrestris) and AMF (addition/no addition of a mix of the four Glomus taxa G. geosporum, G. mosseae, G. intraradices, G. claroideum). Leaf length and flower stem length was significantly increased by earthworms but remained unaffected by additional AMF. The longest leaves and flower stems were observed in pots containing earthworms but no additional AMF. The number of flower buds was unaffected by earthworms but marginally significantly increased by AMF. Plant shoot biomass production was significantly higher when earthworms were present; AMF inoculation had no effect on biomass production. Root biomass production and total plant biomass production remained unaffected by earthworms or AMF. These results indicate that in soil already containing AMF earthworm addition primarily affects vegetative growth while additional AMF inoculation tended to affect reproductive plant parts.


2011 ◽  
Vol 11 (1) ◽  
pp. 183 ◽  
Author(s):  
Jérôme Auzanneau ◽  
Christian Huyghe ◽  
Abraham J Escobar-Gutiérrez ◽  
Bernadette Julier ◽  
François Gastal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document