scholarly journals Assessing possibility of technogenic raw material processing using ultra-low concentrations of sodium cyanide

2020 ◽  
Vol 24 (5) ◽  
pp. 1105-1112
Author(s):  
Anastasia Vasilkova ◽  
◽  
Alexander Byvaltsev ◽  
Olga Khmelnitskaya ◽  
Grigory Voiloshnikov ◽  
...  

The purpose of the study is to conduct experiments in order to determine the possibility of technogenic gold-bearing raw material cyanidation using ultra-low concentrations of NaCN. Experiments are carried out on the cyanidation of three samples of technogenic raw materials of different composition. The first sample consists of pyrite cinders (Au - 1.8-2.3 g/t, Ag - 13-22 g/t, Fe - 48.52%, Cu - 0.15-0.30%, Zn - 0.3-0.6%). The second sample is represented by the aged tailings of copper-zinc flotation (sample I) with the content of Au - 0.8 g/t, Ag - 7.0 g/t, Fe - 17.2%, Cu - 0.212%, Zn - 0.207%. The next object is the copper-zinc flotation tailings of a concentration plant (sample II), with the following content of Au - 1.22 g/t, Ag - 15.2 g/t, Cu - 0.13%, Zn - 0.23%. It is recommended to use an aqueous wash from non-ferrous metals with subsequent lime treatment as a preliminary processing of pyrite cinders. Cyanidation is carried out at different consumptions of reagent: from 0.075 to 3 kg/t. The experiments have shown that gold recovery in this range of NaCN consumption varies from 42.9 to 44.2%; moreover, a decrease in the reagent consumption allows to reduce the concentration of non-ferrous metal ions in cyanidation solutions. Before cyanidation sample I has also been subjected to aqueous wash to remove acid and non-ferrous metals. NaCN consumption varies from 0.25 to 2.2 kg/t. In this case the extraction of gold amounts to 36.6-46.4%. Cyanidation of tailings (sample II) is carried out in the range of 0.15-1.2 kg/t of NaCN. Gold recovery varies from 24.1 to 30.9%. The cyanidation technology of technogenic raw materials in the field of ultra-low concentrations of sodium cyanide is promising, since it provides acceptable gold recovery under low reagent consumption. For further research in the field of development of an extraction technology of valuable components, the flotation tailings of copper-zinc production (sample II) are chosen as a promising object. It is planned to carry out semi-industrial tests, calculate technical and economic indicators and develop process regulations.

2019 ◽  
pp. 11-16
Author(s):  
E. V. Chernousenko ◽  
◽  
G. V. Mitrofanova ◽  
I. N. Vishnyakova ◽  
Yu. S. Kameneva ◽  
...  

2020 ◽  
pp. 109-130
Author(s):  
Elizaveta Rastyannikova ◽  

Since the beginning of the XXI century, the raw material of non-ferrous metallurgy began to acquire new outlines. First, due to the growing demand for resources from the rapidly developing countries of Asia (China, India, South Korea), the volume of world production and international flows of both raw ore and ore dressing – concentrates have increased. Secondly, the concentration of countries that produce raw materials on the one hand and consume them on the other has increased. The article is devoted to comparative statistical analysis of international flows of raw materials of non-ferrous metals. The leading countries in the world exporting non-ferrous metal ores and countries importing them have been identified. The impact of new applications of non-ferrous metals on increasing international trade, such as the expansion of the production of batteries for electromobile and consumer electronics, the development of nuclear energy, etc., is highlighted.


2021 ◽  
Vol 316 ◽  
pp. 1050-1054
Author(s):  
V.N. Zyryanova ◽  
E.V. Lytkina ◽  
A.P. Ochur-Ool

Increasing water resistance and mechanical strength of hardening magnesian binders’ products can be achieved by introducing microfillings into a hardening dispersed system. It is shown that serpentine provides an increase strength and water resistance in hydration and hardening process, being as a structure-forming component, it intensifies this process. It allows expanding the raw material base for the production of magnesia binders for construction purposes.


Author(s):  
A. M. Klyushnikov ◽  
E. N. Selivanov ◽  
K. V. Pikulin ◽  
V. V. Belyaev ◽  
A. B. Lebed' ◽  
...  

The investigating results are given for the periclase-chromite refractories' composition and structure which are in contact with the pulverized coal and gas medium in the coppersulfide smelting furnaces. The high-temperature burnt copper concentrate and the sulfur dioxide gas suspensions combined action changes the surface and deep refractories layers chemical composition, with that the impurities content reach the value in weight percent: Fe 54,0, Cu 7,2, Zn 6,4, S 1,8. The refractory's surface layer saturation with the iron and non-ferrous metals oxides decreases the porosity and gives rise to low-melting compositions and eutectics. The refractory decomposition is induced by the shelling of the refractory surface layers with the filled porous taking place in course of the heating-cooling cycling because of the phase's thermal linear expansion coefficients. When the spent refractory disposal, it is feasible to separate mechanically the surface layer for the non-ferrous metals extracting, the rest part can be used for obtaining the refractory powder of various purpose.


2021 ◽  
Vol 13 (2) ◽  
pp. 224-237
Author(s):  
Valentin CHANTURIA ◽  
◽  
Irina SHADRUNOVA ◽  
Olga GORLOVA ◽  
◽  
...  

Innovative processes of deep and complex processing of technogenic raw materials in the context of sustainable development of the mining industry and the economic challenges facing the mining industry should ensure the transition to a circular economy and the maximum use of natural resources. The article reflects the priority scientific and technological research on the involvement of technogenic mineral resources in efficient processing. Presented, developed at ICEMR RAS, including jointly with universities, research and production organizations and enterprises, modern innovative processes of deep and environmentally friendly processing of refractory mineral raw materials of complex material composition (tailings of enrichment of non-ferrous and noble metal ores, poor off-balance ores, slags ferrous and nonferrous metallurgy, sludge of metallurgical production) and hydro-mineral technogenic resources (acidic mineralized bottom-dump waters of mining enterprises of the copper-zinc complex of the Urals, saponite-containing circulating waters of diamond processing factories). Among other things, new directions in the field of selective disintegration of finely dispersed mineral raw materials based on energy effects and deep processing of slags are outlined; increasing the selectivity of enrichment processes; combined processing of technogenic raw materials; resource-saving processing of technogenic and hydro-mineral resources, obtaining secondary products from processing waste. It is shown that in the face of new economic challenges, Russia has sufficient scientific and technological potential in the field of deep and environmentally safe processing of technogenic raw materials in the form of developed and, to varying degrees, tested innovative resource-saving technologies that correspond to the world level, and in a number of technologies are superior to it.


Author(s):  
Kseniya Kovaleva

Introduction. The article is devoted to the results of tracing research of things made of non-ferrous metals from the collections of Tsarevskoe, Vodyanskoe, and Mechetnoe settlements, stored in the funds of the Volgograd regional museum of local lore. Method. The author used the method of tracing. The digital microscope DigiMicro 2.0. was used to record the results of observation. Analysis. The author studied 63 products and allocated two large groups: 1) cast products and 2) forged products. The study fixed the following operations for cast products: the use of open and closed molds, casting in composite forms, casting by the smelted model, by the impression, liner casting. In group 2, the following methods of forging were singled out: forming forging, punching, drawing and forging of wire, bending, drawing, twisting, hacking, cutting. Soldering was used to connect the elements. After forming, most of the products passed the subsequent processing associated with the removal of defects (primarily post-casting) and the application of decor (hammering, engraving, stamping, polishing). In addition, the decor could be formed during the creation of the mold (cast decor). Results. As a result of the study, it was noted the use of a wide range of techniques and operations with a comparative technological simplicity for most products. It was also noticed that a few things have been specially prepared for the processing, and it demonstrates the use of secondary raw materials.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042035
Author(s):  
E Lytkina

Abstract Today, the waste of the mining industry is more than 8 billion tons. Analysis of the literature data showed that most of the man-made waste that is generated as a result of the development of mineral deposits is suitable for use in many industries, in particular, in the production of building materials. The use of technogenic raw materials allows us to solve the following tasks: Environmental aspect - reducing the number of dumps and reducing their volumes. And this, in turn, improves the ecology of regions and territories. 2. Economic aspect - reducing the cost of construction products through the use of almost free raw materials, the release of more competitive products. Of course, it is necessary to provide that part of the costs will be spent on additional processing, revision, activation, modification of this technogenic raw material component. But today we have to think about how to clear the territory of substandard “waste rock” and use it to reduce the production and consumption of natural raw materials. A similar process can create waste-free production.


2018 ◽  
Vol 20 (4) ◽  
pp. 706-711 ◽  

<p>WEEE is a fast-growing waste stream that includes potentially hazardous substances, but also valuable secondary raw materials, which can be recovered by adequate recycling and recovery treatment. In the last years, the research interest has moved from the conventional recycling (recovery of ferrous and non-ferrous metals, plastic, glass and other “mass relevant” fractions presented in WEEE), to the innovational recycling, aimed to recover trace elements, such as critical metals (CMs) and rare earth elements (REEs). Currently, the majority of CMs and REEs are lost during the pre-treatment processes. In this paper, an overview of the most relevant e-waste categories and products in terms of CMs and REEs presence, a description of currently applied pre-treatment methods and fate of the observed group of metals during pre-processing phase, as well as general recommendation in order to avoid losses of CMs and REEs within the WEEE treatment chain, are elaborated.</p>


2021 ◽  
Vol 25 (1) ◽  
pp. 97-107
Author(s):  
A. О. Vasilkova ◽  
N. V. Vasilkov ◽  
О. D. Khmelnitskaya ◽  
G. I. Voyloshnikov

 In this article, we review existing approaches to recycling technogenic raw materials (ore dumps, metallurgical production slag, mill tailings of ore-dressing plants, etc.), containing non-ferrous and noble metals, which are accumulated in almost non-ferrous metallurgy industries. An analysis of existing technologies for processing technogenic raw materials (pyrite cinders and flotation tailings of concentration plants), which include enrichment, pyro- and hydrometallurgical and combined ways of extracting valuable components, was conducted on the basis of a review of published sources. It was shown that enrichment (screening, desliming in a hydrocyclone, enrichment using a concentration table, magneticliquid separation, flotation), pyrometallurgical and combined ways for extracting noble metals from this type of raw materials are unprofitable. The most satisfactory results were obtained using hydrometallurgical methods to extract valuable components from technogenic raw materials. Various solvents, such as sodium cyanide, thiocarbamide, sodium thiosulphate and sodium sulphite were tested as leaching agents. Cyanation proved to be the most effective way to extract noble metals from technogenic raw materials; however, this process is characterised by a high consumption of sodium cyanide. Therefore, it is of importance to discover an approach to extracting valuable components from such problematic products in order to make their processing more cost-effective by reducing cyanide consumption while maintaining gold extraction. According to the obtained results, gold-containing raw materials are promising in terms of extraction of nonferrous and noble metals using hydrometallurgical technologies. Future research should identify rational methods for processing technogenic gold-containing raw materials in order to make the technology more profitable for extracting valuable components. 


Sign in / Sign up

Export Citation Format

Share Document