scholarly journals Mixed magnesian binders using local silicate waste production

2021 ◽  
Vol 2131 (4) ◽  
pp. 042035
Author(s):  
E Lytkina

Abstract Today, the waste of the mining industry is more than 8 billion tons. Analysis of the literature data showed that most of the man-made waste that is generated as a result of the development of mineral deposits is suitable for use in many industries, in particular, in the production of building materials. The use of technogenic raw materials allows us to solve the following tasks: Environmental aspect - reducing the number of dumps and reducing their volumes. And this, in turn, improves the ecology of regions and territories. 2. Economic aspect - reducing the cost of construction products through the use of almost free raw materials, the release of more competitive products. Of course, it is necessary to provide that part of the costs will be spent on additional processing, revision, activation, modification of this technogenic raw material component. But today we have to think about how to clear the territory of substandard “waste rock” and use it to reduce the production and consumption of natural raw materials. A similar process can create waste-free production.

Author(s):  
Aitkazinova Sh.A., ◽  
◽  
Bek А.А., ◽  
Derbisov K.T., ◽  
Donenbayeva N.S., ◽  
...  

Results of longstanding researches of Satbayev University scientists on the development of modified building materials to strengthen cracked mountain structures based on industrial waste are considered. Industrial processing of technogenic raw materials (enrichment and processing waste, overburden and enclosing rocks), which is similar in composition to natural and used in conventional trend, scarcely different from industrial processing of mineral raw materials. Creation of effective technologies for the processing of technogenic raw materials is an urgent task, which make it possible to obtain competitive products from it for various industries. Various methods of preparing solutions for strengthening of fractured rocks and building structures are analyzed. Research results of tailings of the Balkhash Mining and Metallurgical Combine and preparing solutions for strengthening fractured rocks and underground mining structures are presented. Rock mass strengthening in cracked areas is achieved by adding substances into the cracks, which after hardening and solidification with rocks, increase its shearing resistance characteristics. The most widespread hardening methods were cementation during mine workings (underground structures) in fractured rocks. Significance of obtained results for construction industry is in expansion and reproduction of raw material base of building materials industry through the use of Mining and metallurgical complex waste (tailings) and development of resource-saving technologies. Practical significance of work is in the detailed development of modified method for the production of building materials and products.


2019 ◽  
Vol 23 (7) ◽  
pp. 31-35
Author(s):  
M.S. Saydumov ◽  
S.-A.Y. Murtazaev ◽  
A.Kh. Alaskhanov ◽  
I.S. Dagin ◽  
M.R. Nakhayev

The results of tests of secondary construction materials derived from man-made materials are presented. The granulometric and chemical compositions of secondary products from technogenic raw materials are investigated. The analysis of local natural and man-made raw materials base of the Chechen Republic. The possibilities of using local natural raw materials (crushed stone from gravel, natural sand, gravel, gypsum, cement, etc.) in the technology of building composite materials are shown. The suitability and efficiency of the use of technogenic raw materials in concrete and mortar technology, justified by the complex economic and environmental effect of its use in the practice of building materials science, have been experimentally proved. It has been established that with the introduction of advanced innovations in the field of concrete science it is possible to produce competitive products that are not inferior to foreign analogues.


2017 ◽  
Vol 2 ◽  
pp. 16-24
Author(s):  
Kochetkov S.P. ◽  
Bryl S.V. ◽  
Smirnov N.N. ◽  
Rukhlina N.I. ◽  
Rukhlin G.V.

For production of binding building materials in Russia and worldwide, used a variety of calcium-containing natural raw material: calcium carbonates, aragonite (CaCO3); sulfates-gypsum (CaSO4∙2H2O,CaSO4); oxides and hydroxides (bauxite glinozemservice); perforate-apatites and phosphates (Ca5∙(PO4)3∙F). The article discusses the need for air-conditioning of phosphogypsum to ensure that he was suitable without restrictions for processing into high-quality gypsum binders.


2018 ◽  
Vol 22 (5) ◽  
pp. 24-29
Author(s):  
V.Z. Abdrakhimov

It is shown that at present the current system of environmental regulation in Russia is divorced from the real context in which to exist. One of the most promising areas for the use of waste production is ─ involving them recycled as secondary material or energy resources. On the basis of waste oil shale obtained heat-insulating materials with high physical-mechanical indicators. Due to the involvement of industrial waste in manufacturing of heat-insulating materials may dramatically change the parameters of the raw material base of Russia, which also contributes to reducing environmental impact in the regions. The use of waste fuel and energy complex: inter-shale clay and slate slag in the production of insulating materials contributes to recycling of industrial waste, the protection of the environment and expansion of raw materials base for production of ceramic building materials. The compositions of the developed compositions, proposed to obtain a lightweight brick and a porous filler, the authors of this article obtained three patents of the Russian Federation. Utilization of industrial wastes contributes to the development of "green" economy.


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


2021 ◽  
Vol 316 ◽  
pp. 1050-1054
Author(s):  
V.N. Zyryanova ◽  
E.V. Lytkina ◽  
A.P. Ochur-Ool

Increasing water resistance and mechanical strength of hardening magnesian binders’ products can be achieved by introducing microfillings into a hardening dispersed system. It is shown that serpentine provides an increase strength and water resistance in hydration and hardening process, being as a structure-forming component, it intensifies this process. It allows expanding the raw material base for the production of magnesia binders for construction purposes.


2021 ◽  
Vol 13 (2) ◽  
pp. 224-237
Author(s):  
Valentin CHANTURIA ◽  
◽  
Irina SHADRUNOVA ◽  
Olga GORLOVA ◽  
◽  
...  

Innovative processes of deep and complex processing of technogenic raw materials in the context of sustainable development of the mining industry and the economic challenges facing the mining industry should ensure the transition to a circular economy and the maximum use of natural resources. The article reflects the priority scientific and technological research on the involvement of technogenic mineral resources in efficient processing. Presented, developed at ICEMR RAS, including jointly with universities, research and production organizations and enterprises, modern innovative processes of deep and environmentally friendly processing of refractory mineral raw materials of complex material composition (tailings of enrichment of non-ferrous and noble metal ores, poor off-balance ores, slags ferrous and nonferrous metallurgy, sludge of metallurgical production) and hydro-mineral technogenic resources (acidic mineralized bottom-dump waters of mining enterprises of the copper-zinc complex of the Urals, saponite-containing circulating waters of diamond processing factories). Among other things, new directions in the field of selective disintegration of finely dispersed mineral raw materials based on energy effects and deep processing of slags are outlined; increasing the selectivity of enrichment processes; combined processing of technogenic raw materials; resource-saving processing of technogenic and hydro-mineral resources, obtaining secondary products from processing waste. It is shown that in the face of new economic challenges, Russia has sufficient scientific and technological potential in the field of deep and environmentally safe processing of technogenic raw materials in the form of developed and, to varying degrees, tested innovative resource-saving technologies that correspond to the world level, and in a number of technologies are superior to it.


2019 ◽  
Vol 51 (3) ◽  
pp. 285-294
Author(s):  
Dang Wei ◽  
H.-Y. He

High strength lightweight glass-ceramics were fabricated with coal gangue and clay as main raw materials. The utilization ratio of coal gangue, the ratio of the coal gangue with clay, mineralization agents, forming process and sintering process on the properties of the fabricated glass-ceramics were optimized. The utilization ratio of coal gangue reached 75, and the ratio of coal gangue to clay was 3/1, as an optimal property was observed. The optimal sintering temperature was found to be 1370?C. At this optimal temperature, the sintered glass-ceramics showed the main phase of mullite and spindle and so showed high strength, low density, and low water absorbance. The appropriate amounts of codoping of the TiO2, ZnO, and MnO2/dolomite as mineralization agents obviously enhanced the properties of the glass-ceramics. Process optimizations further determined reasonable and optimal process parameters. The high strength lightweight glass-ceramics fabricated in this work may be very suitable for various applications including building materials, cooking ceramics, and proppant materials, et al.


2021 ◽  
Vol 4 (1) ◽  
pp. 27-34
Author(s):  
S-A.Yu. Murtazaev ◽  
A. Uspanova ◽  
M. Hadzhiev ◽  
V. Hadisov

during the implementation of the program to restore the housing stock of the Chechen Republic, as well as during the planned demolition of dilapidated housing, significant volumes of technogenic raw materials were generated, in particular, large volumes of brick and concrete scrap. Enterprises for the production of building materials and products also produce significant volumes of production defects, which accumulate over the years at landfills. Ceramic broken brick and broken brick dropouts are used to fill the roadbed, and the main part still goes to the dump and landfill, which is also an environmental problem. One of the promising ways to use dropouts and broken brick itself is to use them as secondary aggregates in concrete and mortars. This article discusses the issues of improving the quality of ceramic concrete mixtures, choosing the optimal composition and technology for mixing concrete mixtures using dust fractions of dropouts for crushing ceramic brick bricks


Author(s):  
Katerina I. Panova ◽  
◽  
Nicolay N. Pravdin ◽  
Аnatoliy О. Kiryanov ◽  
◽  
...  

In the process of decomposition of phosphate raw materials, the dynamics of transformation of its constituent mineral phosphoric components: fluorapatite and its derivatives into available for plants dihydro - and hydroorthophosphates of calcium and the influence of a natural organic activator on it are studied.. The composition of the obtained organomineral products was evaluated. The questions of intensification of processing of phosphorite in phosphate-peat systems with additional involvement of nitric acid are considered. The possibilities of reducing the amount of acidic reagents to 50% are shown, while guaranteeing a high degree of use of the target raw material component (94%) and the absence of waste.


Sign in / Sign up

Export Citation Format

Share Document