scholarly journals Manufacture of building materials using local raw materials and industrial wastes as an effective production approach for developing building materials while minimising environmental impact

Author(s):  
Sergey V. Makarenko ◽  
◽  
Konstantin О. Vasilyev ◽  
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


2018 ◽  
Vol 931 ◽  
pp. 578-582
Author(s):  
Natalia D. Yatsenko ◽  
N.A. Vil'bitskaya ◽  
A.I. Yatsenko

The article deals with the use of blast furnace slag and mineralising additives as raw materials for the production of building materials. Innovative technologies of brick production from natural raw materials and industrial wastes are developed.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 208 ◽  
Author(s):  
Mónica Rodríguez-Galán ◽  
Bernabé Alonso-Fariñas ◽  
Francisco Baena-Moreno ◽  
Carlos Leiva ◽  
Benito Navarrete ◽  
...  

Herein an innovative process to develop a potential vitreous material with cementing properties is proposed. This process paves a production path through melting industrial waste and subsequently cooling the casting in water. The idea erases the need to reduce the environmental impact of the cement industry in terms of natural resources consumption as well as the re-utilization of abandoned wastes from other industries. The recycled industrial wastes were selected according to the amount of waste produced in the industrial field and its suitable chemical composition, such as construction and demolition waste and/or shells from shellfish. As a main result, the mechanical properties showed by our novel material were worse than those reported by blast furnace slag (25–28 MPa for two different proportions) for seven days and better (43–52 MPa for two different proportions) for 28 days. The rest of the properties evaluated were in agreement with the standards’ requirements. Hence, this novel process would help to minimize the environmental impact of these wastes at the same time that their use in the cement industry would reduce the consumption of raw materials.


Depletion of natural aggregate has created more research to explore the utilization of industrial waste as alternative aggregate in concrete construction. The use of industrial wastes in making of artificial aggregate will lead to greener environment. In this study an attempt has been made to find the suitability of waste materials of palm oil fuel ash (POFA) and water treatment sludge as possible substitute for natural coarse aggregate. Specific gravity, water absorption, crushing strength and impact value have been tested for this mixture. Both raw materials were mixed with lime and alkaline activator. The artificial aggregate was air-cured at non-sintered temperature. Results show that the different mix proportions of the POFA to silt affected the performance of the artificial aggregate. Specific gravity and water absorption increased with the proportion of silt. Lightweight aggregate comprising silt combined with POFA and alkaline activator has the potential to produce a good performance of concrete. These benefits contribute to the production of energy-efficient building materials.


2018 ◽  
Vol 143 ◽  
pp. 02010 ◽  
Author(s):  
Evgeniya Tkach ◽  
Vladimir Solovyov ◽  
Semen Tkach

The purpose of these studies is to justify the feasibility of recycling different types of industrial waste instead of conventional expensive raw materials in production of environmentally friendly aerated concrete with required construction and operational properties. The impact of wastes from various industries on the environmental condition of affected areas, as well as the results of their environmental assessment were analyzed to determine whether these wastes could be used in production of high-performance building materials. The assessment of industrial wastes in aerated concrete production suggests that industrial wastes of hazard class IV can be recycled to produce aerated concrete. An environmentally friendly method for large-scale waste recycling, including a two-step environmentally sustainable mechanism, was developed. The basic quality indicators of the modified aerated concrete proved that the environmental safety could be enhanced by strengthening the structure, increasing its uniformity and improving thermal insulation properties. The modified non-autoclaved aerated concrete products with improved physical and operational properties were developed. They have the following properties: density – D700; class of concrete – B3.5; thermal transmittance coefficient – 0.143 W/(m·°C); frost resistance – F75.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3396 ◽  
Author(s):  
Jorge Carneiro ◽  
David Maria Tobaldi ◽  
Marinélia Neto Capela ◽  
Maria Paula Seabra ◽  
João António Labrincha

The use of wastes, some of them hazards, as raw materials of ceramic pigments has been a way to diminish their environmental impact, to economically valorize them, and to face the depletion of virgin raw materials. In this work were prepared pigments having in their composition only industrial wastes: Cr/Ni electroplating (ES), and sludges from the cutting of natural stones—marble (MS) and granite (GS). The prepared mixtures were calcined at three temperatures (1100, 1200, and 1300 °C) and the obtained powders were characterized by XRD and UV-vis. Their coloring strength and thermal stability were assessed by adding them to different ceramic substrates: glazes (transparent bright and opaque matte) and a stoneware paste. The CIEL*a*b* coordinates of the fired materials were measured. The developed pigments are thermally stable and exhibit good tinting power, originating nicely colored and defect-free ceramic materials.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1066 ◽  
Author(s):  
Valentina Siracusa

Over the last ten years, the demand of biodegradable polymers has grown at an annual rate of 20–30%. However, the market share is about less than 0.1% of the total plastic production due to their lower performances, higher price and limited legislative attention in respect to the standard materials. The biodegradability as a functional added property is often not completely perceived from the final consumers. However, the opportunity to use renewable resources and to reduce the dependency from petroleum resources could become an incentive to accelerate their future growth. Renewable raw materials, coming from industrial wastes such as oilseed crops, starch from cereals and potatoes, cellulose from straw and wood, etc., can be converted into chemical intermediates and polymers, in order to substitute fossil fuel feedstock. The introduction of these new products could represent a significant contribution to sustainable development. However, the use of renewable resources and the production of the bioplastics are no longer a guarantee for a minimal environmental impact. The production process as well as their technical performances and their ultimate disposal has to be carefully considered. Bioplastics are generally biodegradable, but the diffusion of the composting technology is a prerequisite for their development. Efforts are required at industry level in order to develop less expensive and high performance products, with minimal environmental impact technologies.


2020 ◽  
Vol 12 (21) ◽  
pp. 8838
Author(s):  
Maris Sinka ◽  
Jelizaveta Zorica ◽  
Diana Bajare ◽  
Genadijs Sahmenko ◽  
Aleksandrs Korjakins

The construction industry is one of the largest emitters of CO2 because the production of traditional building materials is highly energy-intensive and uses considerable amounts of raw materials. This research aims to decrease the negative environmental impact of the construction industry by providing biocomposites with a low environmental impact due to their bio-based components and efficient use of the materials through 3D printing. Agricultural waste products—hemp shives—are used in these materials as a filler together with three different types of fast-setting binders—magnesium, calcium sulphoaluminate (CSA) and those that are gypsum-based. The study determines the setting time and compressive strength of these binders, as well as the formation of biocomposites of different densities for different applications; extrusion tests and preliminary life cycle assessment (LCA) are also performed. Results show that biocomposites with hemp shives and fast setting binders have a possible application in 3D printing due to their shape stability and buildability, as well as relatively high compressive strength, which allows for load-bearing use at high densities and thermal insulation use at low densities, although printability at low binder content remains a significant challenge. Preliminary LCA results show that CSA and gypsum binders have the lowest environmental impact from the binders considered.


2018 ◽  
Vol 41 ◽  
pp. 02012 ◽  
Author(s):  
Mourad Samir ◽  
Faruz Alama ◽  
Paul Buysse ◽  
Tomas van Nylen ◽  
Oleg Ostanin

The main directions of mining and industrial wastes’ utilization are the production of building materials, their use in the construction industry without additional processing, and also the production of metals from metal-containing raw materials. It should be noted that current waste is preferable for the production of building materials, since they preserve the primary physical and mechanical properties and chemical composition and, moreover, can reach the consumer bypassing all other steps that are mandatory for waste consolidated (transportation, storage, etc.). For the production of building materials, not less than 30% of overburden and refinement tailings are suitable, almost all metallurgical and fuel slags, waste products of fertilizers and building materials. Even larger amounts of waste can be used for various laying and burial works (construction of road bases and dams, filling of worked out areas, leveling of the relief).


2021 ◽  
Vol 93 (1) ◽  
pp. 96-105
Author(s):  
B.Z. ABDRAKHIMOV ◽  
◽  
E.S. ABDRAKHIMOVA ◽  

In this work, using waste from the chemical industry — aluminum-containing nanotechnogenic raw materials and a fuel and energy complex — coal enrichment based on phosphate binders, heat-resistant concrete with high physical and mechanical properties is obtained. Thanks to the use of orthophosphoric acid as a binder, it was possible to utilize 80-90% of chemical industry waste and coal preparation, which helps to reduce the anthropogenic load on the environment and humans. Studies show that as the grain size decreases, the total size of the interface is increased, the average radius of curvature of the convex sections decreases, their excess surface energy grows, and the distances between the sources and absorbers of vacancies in the system decrease. Experimental studies and rich practical experience in ceramic industries confirm the crucial role of the degree of grinding (or the use of nanoscale raw materials). Due to the action of this factor alone, it is possible in some cases to reduce the required sintering temperature by 50-100 °C or more. The use of industrial wastes in the production of building materials contributes to: a) the utilization of industrial wastes; b) environmental protection; b) the expansion of the raw material base for heat-resistant concrete based on phosphate binders.


Sign in / Sign up

Export Citation Format

Share Document