Water Uptake by Seeds as Affected by Water Stress, Capillary Conductivity, and Seed‐Soil Water Contact. II. Analysis of Experimental Data 1

1974 ◽  
Vol 66 (5) ◽  
pp. 647-652 ◽  
Author(s):  
A. Hadas ◽  
D. Russo
F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 43
Author(s):  
Xuejun Dong

The need for improved crop water use efficiency calls for flexible modeling platforms to implement new ideas in plant root uptake and its regulation mechanisms. This paper documents the details of modifying a soil infiltration and redistribution model to include (a) dynamic root growth, (b) non-uniform root distribution and water uptake, (c) the effect of water stress on plant water uptake, and (d) soil evaporation. The paper also demonstrates strategies of using the modified model to simulate soil water dynamics and plant transpiration considering different sensitivity of plants to soil dryness and different mechanisms of root water uptake. In particular, the flexibility of simulating various degrees of compensated uptake (whereby plants tend to maintain potential transpiration under mild water stress) is emphasized. The paper also describes how to estimate unknown root distribution and rooting depth parameters by the use of a simulation-based searching method. The full documentation of the computer code will allow further applications and new development.


2021 ◽  
Author(s):  
Helena Jorda Guerra ◽  
Mutez Ahmed ◽  
Anke Coolens ◽  
Mathieu Javaux ◽  
Doris Vetterlein ◽  
...  

<p>Sustaining world food production under a changing climate and a growing population demands for higher optimization of agricultural resources including water. This requires an accurate understanding and prediction of root water uptake from soils, which depends on several root traits. The role of root hairs in root water uptake is still under debate, with experimental data that both prove and reject the hypothesis that root hairs can facilitate root water uptake, especially under drought conditions. Our objective was to investigate the effect of root hairs in maize at the field scale. A wildtype maize variety (with root hairs) and a hairless mutant were grown in two substrates (loam and sand) at a field site near Halle, Germany (Vetterlein et al., 2020, JPLN). Transpiration, leaf water potential, soil water content and potentials were monitored during 2019 and 2020. Root length density and leaf area were measured at four different plant development stages. A version of Hydrus 1D coupled with Couvreur’s macroscopic root water uptake model (Couvreur et al., 2012, HESS) was parameterized and used to further investigate soil-water relations in this field experiment. In both years, plants emptied the available water in the profile by July, and relied on rain and irrigation afterwards. Non-significant differences in cumulative water losses from the soil, estimated from soil water content measurements, were observed among the four treatments in both years. These results are in agreement with simulated water losses, which also showed small differences in cumulative transpiration among treatments. Mutant plants developed significantly smaller shoots while transpiring similar water volumes as wildtype plants, indicating lower water use efficiency. While there was no visible effect of the genotype in the soil-water relations, a clear effect of the soil type was observed. Simulated collar water potentials and field observations of rolled leaves indicated water stress occurred first in the loam compared to the sand treatments. Plants grew faster in the loam, leading to earlier onset of water stress. Even though plants in the loam produced less roots than in the sand, the onset of stress was not caused by the smaller root system since simulations presuming a larger root system did not predict a later onset of stress. Similarly, a simulation run using a smaller root system in the sandy soil did not predict a significantly earlier onset of stress. Finally, although our model simulations considered only differences in root density among treatments and did not consider different root or rhizosphere properties of the different soils and genotypes, it simulated the observed water dynamics well. Water depletion in the loamy soil was simulated earlier than it was measured. We hypothesize that this is caused by changing root hydraulic properties when roots develop and mature, and suggest that young roots do not start taking up water immediately. Nevertheless, the data quantity and quality obtained in this field experiment exposes the difficulties and challenges we face to monitor water potentials and fluxes in the soil-plant continuum in annual grasses at the field scale.</p>


Soil Research ◽  
2003 ◽  
Vol 41 (3) ◽  
pp. 365 ◽  
Author(s):  
S. R. Green ◽  
I. Vogeler ◽  
B. E. Clothier ◽  
T. M. Mills ◽  
C. van den Dijssel

We report the results from a field experiment in which we examined the spatial and temporal patterns of water uptake by a mature apple tree (Malus domestica Borkh., 'Splendour') in an orchard. Time domain reflectometry was used to measure changes in the soil's volumetric water content, and heat-pulse was used to monitor locally the rates of sap flow in the trunk and roots of the tree. The tree's distribution of root-length density and supporting data to characterise the soil's hydraulic properties were determined for the purpose of modelling soil water movement in the root-zone under an apple tree. Experimental data are compared against the output from a numerical model of the soil water balance that uses Richards' equation for water flow, and uses a distributed macroscopic sink term for root uptake. In general, there was a very good agreement between the measured and modelled results. The apple trees consumed some 70 L of water per day during the middle of summer. The daily water use declined to about 20 L per day with the onset of autumn, coinciding with a reduced evaporative demand and an increasing number of rain days. Water movement in the root-zone soil was dominated by the water uptake via surface roots. Large changes in soil water content were also associated with each irrigation event. Our experimental data support the contention that more frequent irrigation in smaller doses will result in less water percolating through the root-zone. Such an irrigation strategy should make more efficient use of water by minimising the leaching losses. It will also be helpful for environmental protection by reducing the percolation losses of water and solute beyond the grasp of the roots.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Esther Anokye ◽  
Samuel T. Lowor ◽  
Jerome A. Dogbatse ◽  
Francis K. Padi

With increasing frequency and intensity of dry spells in the cocoa production zones of West Africa, strategies for mitigating impact of water stress on cocoa seedling survival are urgently required. We investigated the effects of applied potassium on biomass accumulation, physiological processes and survival of cocoa varieties subjected to water stress in pot experiments in a gauzehouse facility. Four levels of potassium (0, 1, 2, or 3 g/plant as muriate of potash) were used. Soil water stress reduced plant biomass accumulation (shoot and roots), relative water content (RWC), chlorophyll content and fluorescence. Leaf phenol and proline contents were increased under water stress. Additionally, compared to the well-watered conditions, soils under water stress treatments had higher contents of exchangeable potassium and available phosphorus at the end of the experimental period. Potassium applied under well-watered conditions reduced leaf chlorophyll content and fluorescence and increased leaf electrolyte leakage, but improved the growth and integrity of physiological functions under soil water stress. Potassium addition increased biomass partitioning to roots, improved RWC and leaf membrane stability, and significantly improved cocoa seedling survival under water stress. Under water stress, the variety with the highest seedling mortality accumulated the highest contents of phenol and proline. A significant effect of variety on plant physiological functions was observed. Generally, varieties with PA 7 parentage had higher biomass partitioning to roots and better seedling survival under soil moisture stress. Proportion of biomass partitioned to roots, RWC, chlorophyll fluorescence and leaf electrolyte leakage appear to be the most reliable indicators of cocoa seedling tolerance to drought.


2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 425 ◽  
Author(s):  
Fairouz Slama ◽  
Nessrine Zemni ◽  
Fethi Bouksila ◽  
Roberto De Mascellis ◽  
Rachida Bouhlila

Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions.


Sign in / Sign up

Export Citation Format

Share Document