Effects of Produced Water on Soil Characteristics, Plant Biomass, and Secondary Metabolites

2015 ◽  
Vol 44 (6) ◽  
pp. 1938-1947 ◽  
Author(s):  
Andy Burkhardt ◽  
Archana Gawde ◽  
Charles L. Cantrell ◽  
Holly L. Baxter ◽  
Blake L. Joyce ◽  
...  
2016 ◽  
Vol 29 (1) ◽  
pp. 94-100 ◽  
Author(s):  
ADERVAN FERNANDES SOUSA ◽  
LINDBERGUE ARAÚJO CRISOSTOMO ◽  
OLMAR BALLER WEBER ◽  
MARIA EUGENIA ORTIZ ESCOBAR ◽  
TEÓGENES SENNA DE OLIVEIRA

ABSTRACT: Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil-produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW), reverse osmosis-treated produced water (OPW), or ground water (GW). At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis-treated produced water in agriculture. However, more long-term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.


2011 ◽  
Vol 52 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
A. Grejtovský ◽  
K. Markušová ◽  
A. Eliašová ◽  
P.J. Šafárik

A pot experiment was conducted to investigate the influence of varying supplies of Zn (50–150–300 mg/kg soil – Orthic Luvisol) on the uptake of Zn by plants, selected productive parameters and production of secondary metabolites in Matricaria chamomilla L., diploid cv. Novbona. Chamomile takes up Zn easily and accumulates it in all its organs. The maximum supply of Zn resulted in an 18-fold increase in chamomile shoots where it reached the level of 271.0 mg/kg dry matter. Such a treatment resulted in a 5-fold increase of Zn in chamomile anthodia (Matricariae flos drug) reaching a level of 159.8 mg/kg dry matter. During cultivation, experimental plants showed no signs indicating an excess of Zn. Of the selected productive parameters, the increasing concentration of Zn in the soil affected significantly only the plant height. A weak, positive, insignificant effect of Zn was observed in the production of the plant biomass. When supplying Zn at a rate of 50 mg/kg soil the biomass of the shoots dry matter increased by 17% and anthodia by 8%, respectively (P > 0.05). However, an additional increase in Zn supply reduced production of anthodia, while the dose of 300 mg Zn/kg soil resulted in a significant, 17% decrease of anthodia yield in comparison with the maximum production achieved with the treatment by 50 mg Zn/kgsoil. The application of Zn into the soil affected only slightly the content of essential oil and proportion of chamazulene, (E)-β-farnesene, and ene-yne-dicycloethers. An increased supply of Zn did not affect the concentration of flavone apigenin and coumarin herniarin in chamomile anthodia. Zn fertilization decreased the accumulation of Cd in chamomile plants; supply of 50 mg Zn/kg soil and caused an decrease in Cd concentration by 10% in shoots (P > 0.05) and by 37% (from 0.280 to 0.176 mg Cd/kg dry matter) in anthodia (P < 0.01), respectively. An additional increase in soil Zn decreased significantly with an accumulation of Cd by 18% (at a dose of 300 mg Zn/kg soil) only in chamomile shoots.


2008 ◽  
Vol 54 (No. 12) ◽  
pp. 554-565 ◽  
Author(s):  
M. Pietrzykowski

The aim of the study was to assess terrestrial ecosystem development (mainly vegetation and soil characteristics) in the area of a sand mine cast (located in southern Poland) that has been either reclaimed or left for natural succession. A total of 20 sites in a chronosequence of 5, 17, 20 and 25 years were set up in two site categories: reclaimed and non-reclaimed sites. Selected properties of initial soils and features of vegetation were measured and they included carbon accumulation in soil; biomass and diversity of communities were also estimated. Next, based on carbon accumulation, the energy trapped in ecosystem components was estimated. Although the results of plant community investigation did not show the same distinct differences between site categories, the case study suggests that reclamation significantly accelerates ecosystem development. In comparison with spontaneous succession, the complete forest reclamation was found to increase the amount of carbon accumulation, thickness of humus horizon, and energy trapped in soil organic carbon and plant biomass in the developing ecosystem 2–3 times and nitrogen accumulation 5 times.


2008 ◽  
Vol 1 (3) ◽  
pp. 275-281 ◽  
Author(s):  
F. Bravin ◽  
R. Duca ◽  
N. Loiseau ◽  
M. Pean ◽  
O. Puel ◽  
...  

Due to their low concentrations in biological matrices, mycotoxin analyses often encounter detection and quantification problems, especially for toxicokinetic studies. We have developed a strategy to produce in a single process, several fungi secondary metabolites uniformly enriched with 13C, 15N stable isotopes in their 'natural' composition. This includes: (1) a plant culture in the presence of 10%, 50% or 100% 13CO2 as the only source of carbon, and in the presence or not of 10% 15N-enriched nitrogen salts – as expected wheat or maize uniformlyincorporate enriched isotopes into their bioproducts; (2) a subsequent solid culture of different filamentous fungi on plant biomass led to the production of a 'natural' mixture of isotopes-enriched mycotoxins – these compounds exhibit a characteristic isotopic cluster, which can be easily detected by mass spectrometry. As an example, we achieved 10% uniformly 13C-enriched zearalenone, deoxynivalenol and mycophenolic acid by growing Fusarium graminearum or Penicillium brevicompactum on 10% 13C enriched wheat seeds and 3 to 10% 13C, 15N uniformly enriched fumonisins from Fusarium verticillioides cultures on maize seeds or straw. These compounds were used for metabolism and transport studies in mammals either in vitro or in vivo and analysed by MS and MSn spectra of the isotopic cluster but also by 13C, 15N NMR. Moreover, such isotopic pattern enrichment can be used for quantitative evaluations of mycotoxins transport across mammalian biological membranes, alone or in their 'natural' conditions in the presence of other fungi secondary metabolites. Finally, we used such enriched compounds with high reliabilityin order to study zearalenone metabolism but these enriched compounds would also be used as internal standards to quantify zearalenone or fumonisins in contaminated food samples.


Hoehnea ◽  
2017 ◽  
Vol 44 (2) ◽  
pp. 202-210
Author(s):  
Antonio Vicente Moscogliato ◽  
José Marcelo Domingues Torezan

ABSTRACT The mitigation of CO2 emission through high-productivity systems associated with restoration of degraded sites have been increasingly common, highlighting the importance of estimates of the amount and distribution of plant biomass in different ecosystems and under different management systems. The aim of this study was to investigate the influence of planting and soil characteristics and the type of management performed over the aboveground biomass accumulation in two reforestation projects with native species, implanted through Taungya agroforestry system. The differences in aboveground biomass accumulation were probably influenced by agroforestry management, since these variations showed to be independent of age (considered within the age range in this study), the spacing, the species composition, and soil fertility. The values of aboveground biomass are similar to those reported in the literature for other reforestation projects with native species of similar ages.


Author(s):  
Jan Ellenberger ◽  
Nils Siefen ◽  
Priska Krefting ◽  
Jan-Bernd Schulze Lutum ◽  
Daniel Pfarr ◽  
...  

The green biomass of horticultural plants contains valuable secondary metabolites (SM) which can potentially be extracted and sold. When exposed to stress, plants accumulate higher amounts of these SMs, making the extraction and commercialization even more attractive. We evaluated the potential for accumulating of the flavones cynaroside and graveobioside A in leaves of two bell pepper cultivars (Mavras and Stayer) when exposed to salt stress (100 mM NaCl), UVA/B excitation (UVA 4-5 W/m²; UVB 10-14 W/m² for 3 hours per day) or a combination of both stressors. HPLC analyses proved the enhanced accumulation of both metabolites under stress conditions. Cynaroside accumulation is effectively triggered by high-UV stress, whereas graveobioside A contents increase under salt stress. Highest contents were observed in plants exposed to combined stress. Effects of stress on overall plant performance differed significantly between treatments, with least negative impact on aboveground biomass found for high-UV stressed plants. The usage of two non-destructive instruments (Dualex and Multiplex) allowed us to gain insights in ontogenetical effects at the leaf level and temporal development of SM contents over time. Indices provided by those devices correlate fairly with amounts detected via HPLC (Cynaroside: R2 = 0.46 – 0.66; Graveobioside A: R2 = 0.51 – 0.71). The concentrations of both metabolites tend to decrease at leaf level during the ontogenetical development even under stress conditions. High-UV stress is a promising tool for enriching plant leaves with valuable SM without major effects on plant biomass. All data is available online [1].


2021 ◽  
Vol 724 (1) ◽  
pp. 012020
Author(s):  
A Setyawati ◽  
Komariah ◽  
B Pujiasmanto ◽  
A Fatawi ◽  
I Batubara

Sign in / Sign up

Export Citation Format

Share Document