Water Retention Capacity in Coarse Podzol Profiles Predicted from Measured Soil Properties

2002 ◽  
Vol 66 (1) ◽  
pp. 1 ◽  
Author(s):  
M. Mecke ◽  
C. J. Westman ◽  
H. Ilvesniemi
2020 ◽  
Vol 175 ◽  
pp. 09016
Author(s):  
Vitaly Terleev ◽  
Roman Ginevsky ◽  
Viktor Lazarev ◽  
Aleksandr Nikonorov ◽  
Alexander Topaj ◽  
...  

A functional description of the hydrophysical properties of the soil as a capillary-porous medium is presented. The described functions of water retention capacity and hydraulic conductivity of the soil have common parameters, which are interpreted within the framework of physical and statistical concepts. The practical significance of the proposed functions lies in the fact that the volume of labor-intensive field measurements necessary, for example, for modeling the dynamics of soil moisture, is significantly reduced. To identify the parameters of these functions, it is sufficient to use data only on the water retention capacity of the soil. The parameters identified in this way can be used to predict the ratio of the hydraulic conductivity of the soil to the moisture filtration coefficient. The presented system of the hydrophysical functions of the soil is compared with world analogues using literature data on soils of different texture.


2016 ◽  
Vol 19 (2) ◽  
pp. 49-53
Author(s):  
Jana Šimečková ◽  
Jiří Jandák

Abstract Physical properties of soils are affected by many factors. These include the type of fertilizer used. An offer of fertilizers is currently extensive and new types are added, an example may be digestate, which is ranked among organic fertilizers according to Czech legislation. Changes in physical soil properties were monitored on a field trial, which were established on the place of Research grassland station Vatín (region Vysočina, the Czech Republic) in autumn 2013. The field trial comprised different variants of fertilization. Their effects were observed at different vegetation covers. In this paper, we focus on vegetation cover corn, fertilization variants: manure, mineral fertilizer (saltpetre ammonium with limestone) and digestate. The effect of fertilization was observed 3 times during the growing season 2014. It was in June, August and October. The results were obtained by the basic analysis of Kopecky rollers and it was from the depths of 0.05 m and 0.15 m (middle roller). The monitored soil properties were: bulk density, porosity, water retention capacity, maximum capillary water capacity and minimum air capacity. At all investigated physical soil properties there was a positive development during the growing season, with the exception of water retention capacity. The difference was found in the range of changes in various physical properties depending on the applied fertilizer.


Soil Systems ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 31 ◽  
Author(s):  
Francisco L. Pérez

This study examines litter accumulation and associated soil fertility islands under kūpaoa (Dubautia menziesii) shrubs, common at high elevations in Haleakalā National Park (Maui, Hawai’i). The main purposes were to: (i) Analyze chemical and physical properties of kūpaoa leaf-litter, (ii) determine soil changes caused by organic-matter accumulation under plants, and (iii) compare these with the known pedological effects of silversword (Argyroxiphium sandwicense) rosettes in the same area. Surface soil samples were gathered below shrubs, and compared with paired adjacent, bare sandy soils; two soil profiles were also contrasted. Litter patches under kūpaoa covered 0.57–3.61 m2 area and were 22–73 mm thick. A cohesive, 5–30-mm-thick soil crust with moderate aggregate stability developed underneath litter horizons; grain aggregation was presumably related to high organic-matter accumulation. Shear strength and compressibility measurements showed crusts opposed significantly greater resistance to physical removal and erosion than adjacent bare soils. As compared to contiguous bare ground areas, soils below shrubs had higher organic matter percentages, darker colors, faster infiltration rates, and greater water-retention capacity. Chemical soil properties were greatly altered by organic matter: Cations (Ca2+, Mg2+, K+), N, P, and cation-exchange capacity, were higher below plants. Further processes affecting soils under kūpaoa included microclimatic amelioration, and additional water input by fog-drip beneath its dense canopy. Substrate modifications were more pronounced below D. menziesii than A. sandwicense. Organic matter and available nutrient contents were higher under shrubs, where soils also showed greater infiltration and water-retention capacity. These trends resulted from contrasting litter properties between plant species, as kūpaoa leaves have higher nutrient content than silversword foliage. Different litter dynamics and reproduction strategies may also explain contrasting soil properties between the monocarpic rosettes and polycarpic kūpaoa. By inducing substantial substrate changes, Dubautia shrubs alter—or even create—different microhabitats and exert critical control on alpine soil development at Haleakalā.


2021 ◽  
Author(s):  
Jan Vopravil ◽  
Pavel Formánek ◽  
Jaroslava Janků ◽  
Tomáš Khel

Tile drainage belongs to one of the most important meliorative measures in the Czech Republic. It has been hypothesised that it may improve some soil properties which are influenced by the groundwater and their water regime. In the case of meadows, the used management method may also influence the soil properties. In this study, different physical soil properties (particle and bulk density, total soil porosity, maximum capillary water capacity, minimum air capacity, water retention capacity and saturated water content, volumetric water content and matric potential) at depths of 15, 35 or 40 and 60 cm in differently managed meadows (drained versus undrained) located near the village of Železná in the Czech Republic (mildly cold, humid climatic region) were investigated. The drained meadow is used mainly for grazing (extensively) and the undrained meadow is mown twice a year. In addition, the actual evapotranspiration was estimated for the 2018 vegetation season. The selected physical soil properties were significantly (P < 0.05) different between the experimental meadows, especially at depths of 0–28 versus 0–35 cm (particle and bulk density, total soil porosity, maximum capillary water capacity, water retention capacity and saturated water content) and 28–49 versus 35–45 cm (particle density, water retention capacity and saturated water content). In the case of all the studied soil depths, the volumetric water content and matric potential were significantly (P < 0.05) different between the experimental meadows in the years 2016–2019. The actual evapotranspiration was also significantly different (P < 0.05) between the meadows. The obtained differences in the measured soil properties and estimated actual evapotranspiration were probably influenced by the used tile drainage and also by the type of management of the meadow. It is necessary to obtain more research findings with respect to different types of management in the case of drained meadows and also undrained meadows to understand the role of both treatments (tile drainage, management).


2021 ◽  
Vol 17 (1) ◽  
pp. 37-50
Author(s):  
Orsolya Szecsődi ◽  
András Makó ◽  
Viktória Labancz ◽  
Gyöngyi Barna ◽  
Borbála Gálos ◽  
...  

PSD (particle size distribution) is a key factor affecting soil hydro-physical properties (e.g. hydraulic conductivity and water retention), which makes its determination essential. Climate change increases the importance of water retention and permeability as extreme weather events can severely impair the water supply of drought-sensitive vegetation. The amount of water in soils is expected to decrease. The modified Thornthwaite model considers soil properties such as root depth, topsoil layer thickness and particle size distribution (silt and clay fraction) of soil particles combined with the most significant soil properties. At the beginning of the research, we developed a laser diffraction method to replace the standard based “pipette” sedimentation method. The theoretical background of laser diffraction measurements is already known, but their practical application for estimating soil water retention capacity is still poorly understood. The pre-sieving of soil aggregates, the pre-treatment (disaggregation and dispersion) of the samples greatly influence the obtained results. In addition to the sedimentation method, laser diffraction measurements (Malvern Mastersizer 3000) were applied with three variants of pre-treatment. For comparison, the results of a Leptosol, a Cambisol, and a Luvisol were prepared for the first modified Thornthwaite water balance model. Significant differences appeared, especially during drought periods, which could be a basis for studying soil drought sensitivity. The development of our method can estimate the water retention capacity of soil, which could support adaptive forest management plans against climatic and pedological transformations.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1510
Author(s):  
María Ángeles Rivas ◽  
Rocío Casquete ◽  
María de Guía Córdoba ◽  
Santiago Ruíz-Moyano ◽  
María José Benito ◽  
...  

The objective of this study was to evaluate, from a technological and nutritional point of view, the chemical composition and functional properties of the industrial winemaking by-products, namely skins, stems and lees. The chemical and physical characteristics, as well as the functional properties (fat and water retention and swelling capacity, antioxidant capacity, and their prebiotic effect), of the dietary fibre of these by-products were studied. The results showed that the skins, stems, and lees are rich in fibre, with the stem fibre containing the highest amounts of non-extractable polyphenols attached to polysaccharides with high antioxidant activity and prebiotic effect. Lee fibre had the highest water retention capacity and oil retention capacity. The results reveal that winemaking by-products could be used as a source of dietary fibre with functional characteristics for food applications.


2005 ◽  
Vol 21 (6) ◽  
pp. 651-660 ◽  
Author(s):  
Klaus Mehltreter ◽  
Alejandro Flores-Palacios ◽  
José G. García-Franco

The diversity, abundance and frequency of vascular epiphytes on the lower trunk were compared between two host groups of a Mexican cloud forest: angiosperm trees (n = 72) and tree ferns (n = 28). The bark of the five most frequent host trees and the root mantle of the two tree ferns were analysed for their thickness, water content, water retention capacity and pH. A total of 55 epiphyte species and 910 individuals were found on the 27 host species. On hosts with a dbh range of 5–10 cm, epiphytes were significantly more diverse (4.3±0.9 species per host) and more abundant (12.5±2.2 individuals per host) on tree ferns than on angiosperm trees (1.9±0.2 species per host and 3.9±0.6 individuals per host). However, these differences were not significant for the dbh class of 10–20 cm, because epiphyte numbers increased on angiosperm trees with larger host size, but not in tree ferns. Most epiphyte species had no preference for any host group, but four species were significantly more frequent on tree ferns and two species on angiosperm trees. The higher epiphyte diversity and abundance on tree fern trunks of the smallest dbh class is attributed to their presumably greater age and to two stem characteristics, which differed significantly between host groups, the thicker root mantle and higher water retention capacity of tree ferns. These bark characteristics may favour germination and establishment of epiphytes.


Author(s):  
Sandoval-Gallegos Eli Mireya ◽  
Arias-Rico José ◽  
Cruz-Cansino Nelly del Socorro ◽  
Ramírez-Ojeda Deyanira ◽  
Zafra-Rojas Quinatzin Yadira ◽  
...  

The aim of the present research was to determine the effect of boiling on nutritional composition, total phenolic compounds, antioxidant capacity, physicochemical and morphological characteristics of two edible plants Malva parviflora (mallow leaf) and Myrtillocactus geometrizans (garambullo flower). The plants had an important nutritional composition as carbohydrates (48-70 %), dietary fiber (36-42 %) and protein (13 %), as well as total phenolic compounds (468-750 mg GAE/100 g db) with a high antioxidant capacity. However, boiling originated the decrease of soluble compounds, carbohydrates, total phenolic compounds, antioxidant capacity and physicochemical properties. Plants changed to dark colors and physicochemical properties were affected, except to water retention capacity, oil retention capacity and viscosity, which had the same values in mallow leaves (raw and boiled), but increased water retention capacity in garambullo flowers, it may be by changes in the morphology observed. Therefore, is to suggest the raw consumption or with minimal cooking of these plants to avoid changes caused by thermal treatment.


Sign in / Sign up

Export Citation Format

Share Document