scholarly journals Molecular Mechanism of Coronaviruses (COVID-19) and Diagnostic Approaches

2020 ◽  
Author(s):  
Lalit Mohan Jeena ◽  
Nidhi Singh ◽  
Anjali Tempe

An acute respiratory disease is rampantly spreading in population worldwide caused by a novel coronavirus (SARS-CoV-2, also known as COVID-19). The COVID-19 is a major source of disaster in the 21thcentury. It has spread throughout China and is received as a pandemic worldwide. To date (18th May 2020), a total of 4,827,272patients are infected and more than 3,17,174confirmed deaths have been reported with 6.57% fatality rate. Several research investigations have identified that COVID-19 belongs to ?-coronavirus family and has a highly identical genomic structure to bat coronavirus. The novel coronavirus uses the same receptor, ACE-2 (angiotensin-converting enzyme 2) as that for SARS-CoV, and mainly spreads through the respiratory tract. As per WHO, symptoms include shortness of breath especially in the lower respiratory tract, sore, throat, cough, headaches, and fever. However, the specific drugs required to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review on coronavirus to cover the molecular mechanism of viral entry and replication, which provides the basis of future management of COVID-19.

2020 ◽  
Vol 4 (02) ◽  
pp. 121-131
Author(s):  
Pooja Natarajan ◽  
Muralidhar Kanchi ◽  
Vikneswaran Gunaseelan ◽  
Alben Sigamani ◽  
Harmon James ◽  
...  

AbstractThe Spanish influenza pandemic of 1918 globally claimed between 50 and 100 million lives. In India, it was referred to as “The Bombay Fever” and accounted for a fifth of the global death toll. The current outbreak of the novel coronavirus (2019-nCoV), a new human-infecting β-coronavirus, has clearly demonstrated that the size of an organism does not reflect on its ability to affect an entire human population. 2019-nCOV, first detected in December 2019 in Wuhan, China, spread rapidly globally. Disease in humans ranged from flulike symptoms to severe acute hypoxic respiratory failure. The virus appears closely related to two bat-derived severe acute respiratory syndromes (SARS) coronaviruses. Although bats were likely the original host, animals sold at the Huanan seafood market in Wuhan might have been the intermediate host that enabled the emergence of the virus in humans. Under the electron microscope, the SARS-CoV-2 virus grips its receptor tighter than the virus behind the SARS outbreak in 2003 to 2004. The viral particle docks onto the angiotensin-converting enzyme 2 (ACE2) receptor and initiates viral entry. This review discusses the various aspects of the SARS-CoV-2 virus, its structure, pathophysiology, mechanism of interaction with human cells, virulence factors, and drugs involved in the treatment of the disease.


Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Rashika Bansal ◽  
Sriram Gubbi ◽  
Ranganath Muniyappa

Abstract The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Individuals with metabolic syndrome are at increased risk for poor disease outcomes and mortality from COVID-19. The pathophysiologic mechanisms for these observations have not been fully elucidated. A critical interaction between SARS-CoV-2 and the angiotensin-converting enzyme 2 (ACE2) facilitates viral entry into the host cell. ACE2 is expressed in pancreatic islets, vascular endothelium, and adipose tissue, and the SARS-CoV-2 -ACE2 interaction in these tissues, along with other factors, governs the spectrum and the severity of clinical manifestations among COVID-19 patients with metabolic syndrome. Moreover, the pro-inflammatory milieu observed in patients with metabolic syndrome may contribute toward COVID-19-mediated host immune dysregulation, including suboptimal immune responses, hyperinflammation, microvascular dysfunction, and thrombosis. This review describes the spectrum of clinical features, the likely pathophysiologic mechanisms, and potential implications for the management of metabolic syndrome in COVID-19 patients.


Author(s):  
Pooja Natarajan ◽  
Muralidhar Kanchi ◽  
Vikneswaran Gunaseelan ◽  
Alben Sigamani ◽  
James Harmon ◽  
...  

AbstractThe Spanish influenza pandemic of 1918 globally claimed death between 50 and 100 million lives. In India, it was referred to as “The Bombay Fever,” and accounted for a fifth of the global death toll at that time. The current outbreak of the novel coronavirus disease 2019 (COVID-19), a new human-infecting beta coronavirus, has demonstrated that the size of an organism does not reflect on its ability to affect almost an entire human population. COVID-19, first detected in December 2019 in Wuhan, China, that spread rapidly worldwide. In humans, this disease ranged from flu-like symptoms to severe acute hypoxic respiratory failure. By appearance, this virus closely related to two bat-derived severe acute respiratory syndrome (SARS) coronaviruses. Although bats were likely the original host, animals sold at the Huanan seafood market in Wuhan might have been the intermediate host that enabled the emergence of the virus in humans. Under the electron microscope, the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus grips its receptor tighter than the virus behind the SARS outbreak in 2003 to 2004. The viral particle docks onto the angiotensin-converting enzyme 2 (ACE2) receptor and initiates viral entry. This review discusses the various aspects of the SARS-CoV-2 virus, its structure, pathophysiology, mechanism of interaction with human cells, virulence factors, and drug involved in the treatment of the disease.


Kardiologiia ◽  
2021 ◽  
Vol 61 (4) ◽  
pp. 15-23
Author(s):  
A. B. Sugraliyev

The novel coronavirus infection, COVID-19, is a highly contagious viral disease associated with acute, severe respiratory syndrome, which is based on the development of pronounced thrombo-inflammatory syndrome. As the number of patients with COVID-19 increased, heart damage has been reported, especially in patients with severe and critical COVID-19. This review describes the role of angiotensin-converting enzyme 2 receptor in the regulation of viral entry, the variety of damages to the heart and coronary arteries, and the importance of arterial hypertension and of the use of renin-angiotensin-aldosterone system inhibitors in the prognosis of patients with COVID-19.


2021 ◽  
Vol 11 ◽  
Author(s):  
Taizhen Liang ◽  
Jiayin Qiu ◽  
Xiaoge Niu ◽  
Qinhai Ma ◽  
Chenliang Zhou ◽  
...  

The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.


2020 ◽  
Vol 8 (Spl-1-SARS-CoV-2) ◽  
pp. S190-S201
Author(s):  
Muhammad Bilal ◽  
◽  
Muhammad Iqbal Sarfaraz ◽  
Muhammad Iqbal Husnain ◽  
Nimra Sardar ◽  
...  

Novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread across the world. SARS-CoV-2 is viewed as a continuous global health threat resulting in an alarming number of fatalities worldwide. Angiotensin-converting enzyme-2 (ACE2) has been recognized as one of the vital receptors for the SARS-CoV-2, leading to viral entry into the host cells. It also helps many other receptors, which initiate the entry of SARS-CoV-2 in the host body. A variety of proteins and enzymes are involved in triggering the transport mechanism. The route of viral infection depends on the distribution and expression of receptors, as the virus reaches the cell by binding to cell receptors to complete intracellular replication, virus release, and cause cytotoxicity. In addition to alveolar lung tissues, ACE2 also plays a pivotal role in other organs. Due to the abundant presence in lung cells, SARS-CoV-2 mostly affects the lungs and causes their destruction. The spike protein utilizes the digestion of ACE2, which strongly contributes to the pathogenesis of severe lung failure. Different experiments show that ACE2 not only helps the virus to migrate in the host cell but also allow us to fight against this pandemic disease. This review article summarizes the current progress that highlights the critical biological functionalities and mechanisms of ACE2 as the novel receptor to transport SARS-CoV-2 into host cells matrix.


Author(s):  
Mandeep Kaur

Most varieties of viruses generally affect the higher respiratory tract of birds and animals and additionally to humans; coronavirus is certainly one of them. From time to time this coronavirus is spread to human beings from animals. Coronavirus is the reason behind the more severe outbreaks. Recently or current outbreaks of coronavirus is epi-contorted COVID-19. An acute respiratory disorder has been introduced; due to a unique coronavirus know as SARS-Cov-2, also known as 2019-nCoV. This COVID-19 (also as coronavirus sickness 2019) has unfolded in the Wuhan of Middle China and obtains the attention of global. In the 21st century, after the SARS-CoV (severe acute respiratory syndrome coronavirus) in 2002 and MERS-CoV (Middle East respiratory syndrome coronavirus) in 2012, SARS-CoV 2 or COVID-19 is the one of the third creation which causes high scale epidemic coronavirus in the human population. These viruses cause usually more common cold than others. Health practitioners link them with the not unusual cold, pneumonia, fever, bloodless and additionally affect the gastrointestinal tract of a human. Meanwhile, several impartial studies agencies have recognized that SARS-CoV-2 belongs to ß-coronavirus, with the tremendously equal genome to bat coronavirus, pointing to bat as the natural host. The novel coronavirus occupies the same receptor, angiotensin-changing enzyme 2 (ACE-2) as that for SARS-CoV, and in particular spreads through the respiratory tract. Importantly, studies give proof that shows the transmission of this virus to human-to-human, along with many exported instances across the world. The geriatric population and people who are under some diseases are at risk of infection of this virus and susceptible to serious outcomes, which can be associated with acute breathing distress syndrome (ADRS).


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 57
Author(s):  
Zhi-Ling Zhu ◽  
Xiao-Dan Qiu ◽  
Shuo Wu ◽  
Yi-Tong Liu ◽  
Ting Zhao ◽  
...  

The novel coronavirus disease (2019-nCoV) has been affecting global health since the end of 2019, and there is no sign that the epidemic is abating. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. In this study, surface plasmon resonance (SPR) was used as the primary method to screen a library of 960 compounds. A compound 02B05 (demethylzeylasteral, CAS number: 107316-88-1) that had high affinities for S-RBD and ACE2 was discovered, and binding affinities (KD, μM) of 02B05-ACE2 and 02B05-S-RBD were 1.736 and 1.039 μM, respectively. The results of a competition experiment showed that 02B05 could effectively block the binding of S-RBD to ACE2 protein. Furthermore, pseudovirus infection assay revealed that 02B05 could inhibit entry of SARS-CoV-2 pseudovirus into 293T cells to a certain extent at nontoxic concentration. The compoundobtained in this study serve as references for the design of drugs which have potential in the treatment of COVID-19 and can thus accelerate the process of developing effective drugs to treat SARS-CoV-2 infections.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Sally Badawi ◽  
Bassam R. Ali

AbstractWith the emergence of the novel coronavirus SARS-CoV-2 since December 2019, more than 65 million cases have been reported worldwide. This virus has shown high infectivity and severe symptoms in some cases, leading to over 1.5 million deaths globally. Despite the collaborative and concerted research efforts that have been made, no effective medication for COVID-19 (coronavirus disease-2019) is currently available. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as an initial mediator for viral attachment and host cell invasion. ACE2 is widely distributed in the human tissues including the cell surface of lung cells which represent the primary site of the infection. Inhibiting or reducing cell surface availability of ACE2 represents a promising therapy for tackling COVID-19. In this context, most ACE2–based therapeutic strategies have aimed to tackle the virus through the use of angiotensin-converting enzyme (ACE) inhibitors or neutralizing the virus by exogenous administration of ACE2, which does not directly aim to reduce its membrane availability. However, through this review, we present a different perspective focusing on the subcellular localization and trafficking of ACE2. Membrane targeting of ACE2, and shedding and cellular trafficking pathways including the internalization are not well elucidated in literature. Therefore, we hereby present an overview of the fate of newly synthesized ACE2, its post translational modifications, and what is known of its trafficking pathways. In addition, we highlight the possibility that some of the identified ACE2 missense variants might affect its trafficking efficiency and localization and hence may explain some of the observed variable severity of SARS-CoV-2 infections. Moreover, an extensive understanding of these processes is necessarily required to evaluate the potential use of ACE2 as a credible therapeutic target.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Esraa M. O. A. Ismail ◽  
Shaza W. Shantier ◽  
Mona S. Mohammed ◽  
Hassan H. Musa ◽  
Wadah Osman ◽  
...  

The recent outbreak of the highly contagious coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 has created a global health crisis with socioeconomic impacts. Although, recently, vaccines have been approved for the prevention of COVID-19, there is still an urgent need for the discovery of more efficacious and safer drugs especially from natural sources. In this study, a number of quinoline and quinazoline alkaloids with antiviral and/or antimalarial activity were virtually screened against three potential targets for the development of drugs against COVID-19. Among seventy-one tested compounds, twenty-three were selected for molecular docking based on their pharmacokinetic and toxicity profiles. The results identified a number of potential inhibitors. Three of them, namely, norquinadoline A, deoxytryptoquivaline, and deoxynortryptoquivaline, showed strong binding to the three targets, SARS-CoV-2 main protease, spike glycoprotein, and human angiotensin-converting enzyme 2. These alkaloids therefore have promise for being further investigated as possible multitarget drugs against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document