scholarly journals Coronavirus and Homo Sapiens

Author(s):  
Pooja Natarajan ◽  
Muralidhar Kanchi ◽  
Vikneswaran Gunaseelan ◽  
Alben Sigamani ◽  
James Harmon ◽  
...  

AbstractThe Spanish influenza pandemic of 1918 globally claimed death between 50 and 100 million lives. In India, it was referred to as “The Bombay Fever,” and accounted for a fifth of the global death toll at that time. The current outbreak of the novel coronavirus disease 2019 (COVID-19), a new human-infecting beta coronavirus, has demonstrated that the size of an organism does not reflect on its ability to affect almost an entire human population. COVID-19, first detected in December 2019 in Wuhan, China, that spread rapidly worldwide. In humans, this disease ranged from flu-like symptoms to severe acute hypoxic respiratory failure. By appearance, this virus closely related to two bat-derived severe acute respiratory syndrome (SARS) coronaviruses. Although bats were likely the original host, animals sold at the Huanan seafood market in Wuhan might have been the intermediate host that enabled the emergence of the virus in humans. Under the electron microscope, the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus grips its receptor tighter than the virus behind the SARS outbreak in 2003 to 2004. The viral particle docks onto the angiotensin-converting enzyme 2 (ACE2) receptor and initiates viral entry. This review discusses the various aspects of the SARS-CoV-2 virus, its structure, pathophysiology, mechanism of interaction with human cells, virulence factors, and drug involved in the treatment of the disease.

2020 ◽  
Vol 4 (02) ◽  
pp. 121-131
Author(s):  
Pooja Natarajan ◽  
Muralidhar Kanchi ◽  
Vikneswaran Gunaseelan ◽  
Alben Sigamani ◽  
Harmon James ◽  
...  

AbstractThe Spanish influenza pandemic of 1918 globally claimed between 50 and 100 million lives. In India, it was referred to as “The Bombay Fever” and accounted for a fifth of the global death toll. The current outbreak of the novel coronavirus (2019-nCoV), a new human-infecting β-coronavirus, has clearly demonstrated that the size of an organism does not reflect on its ability to affect an entire human population. 2019-nCOV, first detected in December 2019 in Wuhan, China, spread rapidly globally. Disease in humans ranged from flulike symptoms to severe acute hypoxic respiratory failure. The virus appears closely related to two bat-derived severe acute respiratory syndromes (SARS) coronaviruses. Although bats were likely the original host, animals sold at the Huanan seafood market in Wuhan might have been the intermediate host that enabled the emergence of the virus in humans. Under the electron microscope, the SARS-CoV-2 virus grips its receptor tighter than the virus behind the SARS outbreak in 2003 to 2004. The viral particle docks onto the angiotensin-converting enzyme 2 (ACE2) receptor and initiates viral entry. This review discusses the various aspects of the SARS-CoV-2 virus, its structure, pathophysiology, mechanism of interaction with human cells, virulence factors, and drugs involved in the treatment of the disease.


2020 ◽  
Author(s):  
Lalit Mohan Jeena ◽  
Nidhi Singh ◽  
Anjali Tempe

An acute respiratory disease is rampantly spreading in population worldwide caused by a novel coronavirus (SARS-CoV-2, also known as COVID-19). The COVID-19 is a major source of disaster in the 21thcentury. It has spread throughout China and is received as a pandemic worldwide. To date (18th May 2020), a total of 4,827,272patients are infected and more than 3,17,174confirmed deaths have been reported with 6.57% fatality rate. Several research investigations have identified that COVID-19 belongs to ?-coronavirus family and has a highly identical genomic structure to bat coronavirus. The novel coronavirus uses the same receptor, ACE-2 (angiotensin-converting enzyme 2) as that for SARS-CoV, and mainly spreads through the respiratory tract. As per WHO, symptoms include shortness of breath especially in the lower respiratory tract, sore, throat, cough, headaches, and fever. However, the specific drugs required to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review on coronavirus to cover the molecular mechanism of viral entry and replication, which provides the basis of future management of COVID-19.


2022 ◽  
pp. 127-140
Author(s):  
Aaron Lelo Pambu ◽  
Abdellah Zinedine

The current outbreak of the novel coronavirus, SARS-CoV-2 (coronavirus disease 2019; previously 2019- nCoV), epi-centered in Hubei Province of the People's Republic of China, has spread to many other countries caused an extreme burden for healthcare systems globally. Coronaviruses are traditionally considered nonlethal pathogens to humans, mainly causing approximately 15% of common colds. In this century, we have encountered highly pathogenic human CoVs twice. In this chapter, the authors propose to focus the gastrointestinal physiopathology of the infection of SARS-Cov2. This chapter will develop subject like the gastrointestinal manifestations of the infection to SARS-Cov2. The second part of this chapter will develop the role of the gut microbiome in the SARS-Cov2 diseases susceptibilities. And then the authors will show the etiopathogenesis of SARS-Cov2 associated diarrhea. As reported by previous studies, the SARS-Cov virus entry into host cell is mediated by the interaction between the envelop-anchored viral spike protein and the host receptor named angiotensin-converting enzyme 2 (ACE2).


2021 ◽  
Author(s):  
Rana AL-Zaidi ◽  
Nasir AL-Noor ◽  
Adel Habbash

Abstract The ongoing novel coronavirus disease 2019 (COVID-19) is principally defined by its respiratory symptoms. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect the gastrointestinal tract (GIT) and although the pathogenesis of COVID-19 is understood, the exact pathological alterations following infection require further investigation. Here, we report our histopathological findings from a right hemicolectomy specimen from a patient coinfected with COVID-19 and Mycobacterium tuberculosis. Our observations showed that the novel SARS-CoV-2 can affect the GIT, causing epithelial injury and pathological alterations attributed to its ability to infect absorptive enterocytes by interacting with the angiotensin converting enzyme-2 (ACE2) receptor. These pathological findings are regarded as viral cytopathic changes and should be considered when evaluating gastrointestinal specimens from COVID-19-infected patients.


2020 ◽  
Vol 2 (3) ◽  
pp. 230-234
Author(s):  
Nikolaos Chrysanthakopoulos ◽  

A severe pandemic of CoronaVirus disease 2019 (COVID-19), according to World Health Organization (WHO), appeared in China in December 2019, and spread rapidly. The majority of the patients had mild symptoms and good prognosis after recovery; however some patients developed severe inflammatory reaction and passed away from multiple organ complications. The novel coronavirus, Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) is a beta-coronavirus and is similar with the Severe Acute Respiratory Syndrome Corona Virus 1 (SARS-CoV-1) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). SARS-CoV-2 and -1 have the same host receptor, the angiotensin-converting enzyme 2 (ACE2). The pathogenesis of SARS-CoV-2 infection in humans remains unclear. The immune response is essential to control and reduce SARS-CoV-1 and -2 infections, however, irregular and exaggerated immune responses may lead to the immunopathology of the disease and the lung lesions. This article presents the immunological features of SARS-CoV-2 infection and its potential pathogenesis based on the recent observations of the International literature.


Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Rashika Bansal ◽  
Sriram Gubbi ◽  
Ranganath Muniyappa

Abstract The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Individuals with metabolic syndrome are at increased risk for poor disease outcomes and mortality from COVID-19. The pathophysiologic mechanisms for these observations have not been fully elucidated. A critical interaction between SARS-CoV-2 and the angiotensin-converting enzyme 2 (ACE2) facilitates viral entry into the host cell. ACE2 is expressed in pancreatic islets, vascular endothelium, and adipose tissue, and the SARS-CoV-2 -ACE2 interaction in these tissues, along with other factors, governs the spectrum and the severity of clinical manifestations among COVID-19 patients with metabolic syndrome. Moreover, the pro-inflammatory milieu observed in patients with metabolic syndrome may contribute toward COVID-19-mediated host immune dysregulation, including suboptimal immune responses, hyperinflammation, microvascular dysfunction, and thrombosis. This review describes the spectrum of clinical features, the likely pathophysiologic mechanisms, and potential implications for the management of metabolic syndrome in COVID-19 patients.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Sushmita Krishnan ◽  
Darshini Subramanian ◽  
Sri Sakthi Priyadarshini Rajamani

: The coronaviruses belonging to the family Coronaviridae have caused a massive pandemic in December 2019 af-ter its previous outbreaks as SARS-CoV and MERS. The outbreak is believed to have originated from the seafood and live market in Hubei province of China. The Rhinolophus species are the natural hosts of this virus. The unknown virus caus-ing pneumonia took away so many lives before recognising it as the novel Coronavirus. Very little information is known about the biology and nature of the current outbreak. This article reviews multiple aspects encompassing its origin, epide-miology, pathogenesis, symptoms and the global statistics of spread. Acute respiratory distress syndrome (ARDS) is the key symptom of this condition. Angiotensin converting enzyme 2 (ACE2) helps in the penetration of the virus into the tar-get cells. Deeper research and understanding is essential for identification of antibodies that inhibit ACE2 and can prevent viral replication. Drug design and control of disease is crucial. In countries like India where plant diversity is extensive, it is wise to focus on plant based alternative drugs. Many attempts have been made to review and curate the drug discovery attempts using immune-informatics and bioinformatics tools.


Kardiologiia ◽  
2021 ◽  
Vol 61 (4) ◽  
pp. 15-23
Author(s):  
A. B. Sugraliyev

The novel coronavirus infection, COVID-19, is a highly contagious viral disease associated with acute, severe respiratory syndrome, which is based on the development of pronounced thrombo-inflammatory syndrome. As the number of patients with COVID-19 increased, heart damage has been reported, especially in patients with severe and critical COVID-19. This review describes the role of angiotensin-converting enzyme 2 receptor in the regulation of viral entry, the variety of damages to the heart and coronary arteries, and the importance of arterial hypertension and of the use of renin-angiotensin-aldosterone system inhibitors in the prognosis of patients with COVID-19.


2021 ◽  
Vol 11 ◽  
Author(s):  
Taizhen Liang ◽  
Jiayin Qiu ◽  
Xiaoge Niu ◽  
Qinhai Ma ◽  
Chenliang Zhou ◽  
...  

The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.


2020 ◽  
Vol 8 (Spl-1-SARS-CoV-2) ◽  
pp. S190-S201
Author(s):  
Muhammad Bilal ◽  
◽  
Muhammad Iqbal Sarfaraz ◽  
Muhammad Iqbal Husnain ◽  
Nimra Sardar ◽  
...  

Novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread across the world. SARS-CoV-2 is viewed as a continuous global health threat resulting in an alarming number of fatalities worldwide. Angiotensin-converting enzyme-2 (ACE2) has been recognized as one of the vital receptors for the SARS-CoV-2, leading to viral entry into the host cells. It also helps many other receptors, which initiate the entry of SARS-CoV-2 in the host body. A variety of proteins and enzymes are involved in triggering the transport mechanism. The route of viral infection depends on the distribution and expression of receptors, as the virus reaches the cell by binding to cell receptors to complete intracellular replication, virus release, and cause cytotoxicity. In addition to alveolar lung tissues, ACE2 also plays a pivotal role in other organs. Due to the abundant presence in lung cells, SARS-CoV-2 mostly affects the lungs and causes their destruction. The spike protein utilizes the digestion of ACE2, which strongly contributes to the pathogenesis of severe lung failure. Different experiments show that ACE2 not only helps the virus to migrate in the host cell but also allow us to fight against this pandemic disease. This review article summarizes the current progress that highlights the critical biological functionalities and mechanisms of ACE2 as the novel receptor to transport SARS-CoV-2 into host cells matrix.


Sign in / Sign up

Export Citation Format

Share Document