Methods non-redundant error-correcting coding of transmitted information and increase levels of confidence at different stages of its transmission and processing

2017 ◽  
Vol 13 (3) ◽  
pp. 56-67
Author(s):  
S. S. Kukushkin ◽  
V. V. Kochemasov ◽  
S. V. Lazarenko

Technical measurements representing a measurement of higher achieved accuracy, are characterized by the fact that we have to deal with unpredictable errors caused by interference. At the same time, there remains the problem of increasing the reliability of received data and results of measurements while continuously increasing demands on transmission rate information and the reliability of the received data. The article presents a new approach to the transmission of information when using non-traditional representations received and transmitted messages.

2001 ◽  
Vol 08 (02) ◽  
pp. 137-146 ◽  
Author(s):  
Janusz Szczepański ◽  
Zbigniew Kotulski

Pseudorandom number generators are used in many areas of contemporary technology such as modern communication systems and engineering applications. In recent years a new approach to secure transmission of information based on the application of the theory of chaotic dynamical systems has been developed. In this paper we present a method of generating pseudorandom numbers applying discrete chaotic dynamical systems. The idea of construction of chaotic pseudorandom number generators (CPRNG) intrinsically exploits the property of extreme sensitivity of trajectories to small changes of initial conditions, since the generated bits are associated with trajectories in an appropriate way. To ensure good statistical properties of the CPRBG (which determine its quality) we assume that the dynamical systems used are also ergodic or preferably mixing. Finally, since chaotic systems often appear in realistic physical situations, we suggest a physical model of CPRNG.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Boyuan Zhang ◽  
Hengkang Li ◽  
Lisheng Xu ◽  
Lin Qi ◽  
Yudong Yao ◽  
...  

Remote photoplethysmography (rPPG) can be used for noncontact and continuous measurement of the heart rate (HR). Currently, the main factors affecting the accuracy and robustness of rPPG-based HR measurement methods are the subject’s skin tone, body movement, exercise recovery, and variable or inadequate illumination. In response to these challenges, this study is aimed at investigating a rPPG-based HR measurement method that is effective under a wide range of conditions by only using a webcam. We propose a new approach, which combines joint blind source separation (JBSS) and a projection process based on a skin reflection model, so as to eliminate the interference of background illumination and enhance the extraction of pulse rate information. Three datasets derived from subjects with different skin tones considering six environmental scenarios are used to validate the proposed method against three other state-of-the-art methods. The results show that the proposed method can provide more accurate and robust HR measurement for all three datasets and is therefore more applicable to a wide range of scenarios.


2021 ◽  
Vol 4 (1) ◽  
pp. p72
Author(s):  
Saad Alhajraf

This paper examines the transmission of information between small and large sized portfolios within the Boursa Kuwait between 2011 and 2020.  The study documents a constant and steady stream of feedback which demonstrates a sizeable and significant impact on market volatility; albeit at varying degrees of effect on smaller portfolios as compared with larger ones.  Evidence suggests a more persistent volatility on larger portfolios, indicating a disparity on the interpretations of transmitted information between the varied styles of investors in the Kuwait Boursa.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
P. Hagemann

The use of computers in the analytical electron microscopy today shows three different trends (1) automated image analysis with dedicated computer systems, (2) instrument control by microprocessors and (3) data acquisition and processing e.g. X-ray or EEL Spectroscopy.While image analysis in the T.E.M. usually needs a television chain to get a sequential transmission suitable as computer input, the STEM system already has this necessary facility. For the EM400T-STEM system therefore an interface was developed, that allows external control of the beam deflection in TEM as well as the control of the STEM probe and video signal/beam brightness on the STEM screen.The interface sends and receives analogue signals so that the transmission rate is determined by the convertors in the actual computer periphery.


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Author(s):  
Arthur V. Jones

With the introduction of field-emission sources and “immersion-type” objective lenses, the resolution obtainable with modern scanning electron microscopes is approaching that obtainable in STEM and TEM-but only with specific types of specimens. Bulk specimens still suffer from the restrictions imposed by internal scattering and the need to be conducting. Advances in coating techniques have largely overcome these problems but for a sizeable body of specimens, the restrictions imposed by coating are unacceptable.For such specimens, low voltage operation, with its low beam penetration and freedom from charging artifacts, is the method of choice.Unfortunately the technical dificulties in producing an electron beam sufficiently small and of sufficient intensity are considerably greater at low beam energies — so much so that a radical reevaluation of convential design concepts is needed.The probe diameter is usually given by


1968 ◽  
Vol 32 (3) ◽  
pp. 279-282
Author(s):  
JI Mock ◽  
JW Grenfell ◽  
WA Richter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document