scholarly journals Sex differences in gray and white matter structure in age-matched unrelated males and females and opposite-sex siblings.

2013 ◽  
Vol 6 ◽  
pp. 7-21 ◽  
Author(s):  
Anouk Den Braber ◽  
Dennis Van ‘t Ent ◽  
Diederick Stoffers ◽  
Klaus Linkenkaer-Hansen ◽  
Dorret I. Boomsma ◽  
...  

Apart from the general finding of larger global brain volumes in men, neuroimaging studies that compared brain structure between men and women have yielded some inconsistencies with regard to regional differences. One confound when comparing men and women may be differences in their genetic and or family background. A design that addresses such confounds compares brain structures between brothers and sisters, who share their genetic and family background.In the present study, we aimed to contribute to the existing literature on structural brain sex differences by comparing regional gray and white matter volume, using voxel based morphometry (VBM); and white matter microstructure, using tract-based spatial statistics (TBSS), between 40 unrelated males and females, and contrasting the results with those obtained in a group of 47 opposite-sex siblings, including 42 dizygotic opposite-sex (DOS) twin pairs.”Our results showed that men had larger global brain volumes as well as higher mean fractional anisotropy across the brain and showed regionally enlarged gray matter volume and higher fractional anisotropy in, or surrounding, subcortical structures (hypothalamus, thalamus, putamen and globus pallidus and rostral midbrain). Increased gray matter volume in women was restricted to areas of the cortex, including inferior temporal, insular, cingulate, precentral and frontal/prefrontal regions.These sex differences were generally consistent between the unrelated male-female pairs and the opposite-sex sibling pairs. Therefore, we conclude that these sex differences are not the result of confounding differences in genetic or family background and that the etiology of these sex differences merits further investigation.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Malo Gaubert ◽  
Catharina Lange ◽  
Antoine Garnier-Crussard ◽  
Theresa Köbe ◽  
Salma Bougacha ◽  
...  

Abstract Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.


2019 ◽  
Vol 15 (7) ◽  
pp. P207-P209
Author(s):  
Oriol Grau-Rivera ◽  
Grégory Operto ◽  
Carles Falcon ◽  
Raffaele Cacciaglia ◽  
Gonzalo Sánchez-Benavides ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4953
Author(s):  
Natalie M. Zahr ◽  
Kilian M. Pohl ◽  
Allison J. Kwong ◽  
Edith V. Sullivan ◽  
Adolf Pfefferbaum

Classical inflammation in response to bacterial, parasitic, or viral infections such as HIV includes local recruitment of neutrophils and macrophages and the production of proinflammatory cytokines and chemokines. Proposed biomarkers of organ integrity in Alcohol Use Disorders (AUD) include elevations in peripheral plasma levels of proinflammatory proteins. In testing this proposal, previous work included a group of human immunodeficiency virus (HIV)-infected individuals as positive controls and identified elevations in the soluble proteins TNFα and IP10; these cytokines were only elevated in AUD individuals seropositive for hepatitis C infection (HCV). The current observational, cross-sectional study evaluated whether higher levels of these proinflammatory cytokines would be associated with compromised brain integrity. Soluble protein levels were quantified in 86 healthy controls, 132 individuals with AUD, 54 individuals seropositive for HIV, and 49 individuals with AUD and HIV. Among the patient groups, HCV was present in 24 of the individuals with AUD, 13 individuals with HIV, and 20 of the individuals in the comorbid AUD and HIV group. Soluble protein levels were correlated to regional brain volumes as quantified with structural magnetic resonance imaging (MRI). In addition to higher levels of TNFα and IP10 in the 2 HIV groups and the HCV-seropositive AUD group, this study identified lower levels of IL1β in the 3 patient groups relative to the control group. Only TNFα, however, showed a relationship with brain integrity: in HCV or HIV infection, higher peripheral levels of TNFα correlated with smaller subcortical white matter volume. These preliminary results highlight the privileged status of TNFα on brain integrity in the context of infection.


2011 ◽  
Vol 96 (4) ◽  
pp. 1129-1135 ◽  
Author(s):  
Ingrid Hansen-Pupp ◽  
Holger Hövel ◽  
Ann Hellström ◽  
Lena Hellström-Westas ◽  
Chatarina Löfqvist ◽  
...  

Abstract Context: IGF-I and IGF binding protein-3 (IGFBP-3) are essential for growth and maturation of the developing brain. Objective: The aim of this study was to evaluate the association between postnatal serum concentrations of IGF-I and IGFBP-3 and brain volumes at term in very preterm infants. Design: Fifty-one infants with a mean (sd) gestational age (GA) of 26.4 (1.9) wk and birth weight (BW) of 888 (288) g were studied, with weekly blood sampling of IGF-I and IGFBP-3 from birth until 35 gestational weeks (GW) and daily calculation of protein and caloric intake. Magnetic resonance images obtained at 40 GW were segmented into total brain, cerebellar, cerebrospinal fluid, gray matter, and unmyelinated white matter volumes. Main Outcome Measures: We evaluated brain growth by measuring brain volumes using magnetic resonance imaging. Results: Mean IGF-I concentrations from birth to 35 GW correlated with total brain volume, unmyelinated white matter volume, gray matter volume, and cerebellar volume [r = 0.55 (P < 0.001); r = 0.55 (P < 0.001); r = 0.44 (P = 0.002); and r = 0.58 (P < 0.001), respectively]. Similar correlations were observed for IGFBP-3 concentrations. Correlations remained after adjustment for GA, mean protein and caloric intakes, gender, severe brain damage, and steroid treatment. Protein and caloric intakes were not related to brain volumes. Infants with BW small for GA had lower mean concentrations of IGF-I (P = 0.006) and smaller brain volumes (P = 0.001–0.013) than infants with BW appropriate for GA. Conclusion: Postnatal IGF-I and IGFBP-3 concentrations are positively associated with brain volumes at 40 GW in very preterm infants. Normalization of the IGF-I axis, directly or indirectly, may support normal brain development in very preterm infants.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012869
Author(s):  
Raffaello Bonacchi ◽  
Alessandro Meani ◽  
Elisabetta Pagani ◽  
Olga Marchesi ◽  
Andrea Falini ◽  
...  

Objective:To investigate whether age at onset influences brain gray matter volume (GMV) and white matter (WM) microstructural abnormalities in adult multiple sclerosis (MS) patients, given its influence on clinical phenotype and disease course.Method:In this hypothesis-driven cross-sectional study, we enrolled 67 pediatric-onset MS (POMS) patients and 143 sex- and disease duration (DD)-matched randomly-selected adult-onset MS (AOMS) patients, together with 208 healthy controls. All subjects underwent neurological evaluation and 3T MRI acquisition. MRI variables were standardized based on healthy controls, to remove effects of age and sex. Associations with DD in POMS and AOMS patients were studied with linear models. Time to reach clinical and MRI milestones was assessed with product-limit approach.Results:At DD=1 year, GMV and WM fractional anisotropy (FA) were abnormal in AOMS but not in POMS patients. Significant interaction of age at onset (POMS vs AOMS) into the association with DD was found for GMV and WM FA. The crossing point of regression lines in POMS and AOMS patients was at 20 years of DD for GMV and 14 for WM FA. For POMS and AOMS patients, median DD was 29 and 19 years to reach Expanded Disability Status Scale=3 (p<0.001), 31 and 26 years to reach abnormal Paced Auditory Serial Addition Task-3 (p=0.01), 24 and 18 years to reach abnormal GMV (p=0.04), and 19 and 17 years to reach abnormal WM FA (p=0.36).Conclusions:Younger patients are initially resilient to MS-related damage. Then, compensatory mechanisms start failing with loss of WM integrity, followed by GM atrophy and finally disability.


2018 ◽  
Vol 11 ◽  
pp. 1178623X1879992 ◽  
Author(s):  
Vikas Pareek ◽  
VP Subramanyam Rallabandi ◽  
Prasun K Roy

We investigate the relationship between Gray matter’s volume vis-a-vis White matter’s integrity indices, such Axial diffusivity, Radial diffusivity, Mean diffusivity, and Fractional anisotropy, in individuals undergoing healthy aging. We investigated MRI scans of 177 adults across 20 to 85 years. We used Voxel-based morphometry, and FDT-FSL analysis for estimation of Gray matter volume and White matter’s diffusion indices respectively. Across the life span, we observed an inter-relationship between the Gray matter and White matter, namely that both Axial diffusivity and Mean Diffusivity show strong correlation with Gray matter volume, along the aging process. Furthermore, across all ages the Fractional anisotropy and Mean diffusivity are found to be significantly reduced in females when compared to males, but there are no significant gender differences in Axial Diffusivity and Radial diffusivity. We conclude that for both genders across all ages, the Gray matter’s Volume is strongly correlated with White matter’s Axial Diffusivity and Mean Diffusivity, while being weakly correlated with Fractional Anisotropy. Our study clarifies the multi-scale relationship in brain tissue, by elucidating how the White matter’s micro-structural parameters influences the Gray matter’s macro-structural characteristics, during healthy aging across the life-span.


SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Ambra Stefani ◽  
Thomas Mitterling ◽  
Anna Heidbreder ◽  
Ruth Steiger ◽  
Christian Kremser ◽  
...  

Abstract Study Objectives Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. Methods Eighty-seven patients with RLS (mean age 51, range 20–72 years; disease duration, mean 13 years, range 1–46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. Results Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p &lt; 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = −0.22; p &lt; 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p &lt; 0.01). Conclusions Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.


2012 ◽  
Vol 33 (4) ◽  
pp. 834.e7-834.e16 ◽  
Author(s):  
Cyrus A. Raji ◽  
Oscar L. Lopez ◽  
Lewis H. Kuller ◽  
Owen T. Carmichael ◽  
William T. Longstreth ◽  
...  

1978 ◽  
Vol 42 (3) ◽  
pp. 715-721 ◽  
Author(s):  
David E. Domelsmith ◽  
James T. Dietch

Previous research suggests that there should be a negative correlation between Machiavellianism (Mach) and willingness to reveal things about oneself. However, existing data are unclear and contradictory, especially regarding differences between males and females. College students (48 male, 77 female) completed measures of both Machiavellianism and self-disclosure, and the two sets of scores were correlated. As expected, Mach was significantly correlated with unwillingness to self-disclose among males. For the females, however, Mach was significantly correlated with willingness to disclose. The two correlations are significantly different. Culturally defined differences in the goals of men and women may account for the results. According to current stereotypes, men are oriented toward individual achievement, while die goals of women are more “social,” being popular, nurturant, skilled at getting along with others, etc. Women who accept these goals and who are willing to employ manipulative (Machiavellian) tactics to achieve them could use self-disclosure effectively, while it would be an ineffective strategy for men.


Sign in / Sign up

Export Citation Format

Share Document