scholarly journals Aspergillus niger as a Bio-Lab for Extracellular Synthesis of Silver Nanoparticles and Its Antibacterial Activity

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Tariq Ahmad ◽  
Walid Khaddam ◽  
Lina Alnaddaf ◽  
Maysaa Alloosh
2018 ◽  
Vol 11 (12) ◽  
pp. 5282 ◽  
Author(s):  
Suresh Dhanaraj ◽  
P. Bharathiraja ◽  
R. Dhandapani ◽  
R. Subbaiya ◽  
A. K. Kathireshan

2020 ◽  
Vol 8 (3) ◽  
pp. 89-96
Author(s):  
Gouse Basha Sheik ◽  
Ali Ismail Ali Abdel Raheim ◽  
Zeyad Abdullah Alzeyadi ◽  
Mohammed Ibrahim AlGhonaim

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 360 ◽  
Author(s):  
Gajanan Ghodake ◽  
Min Kim ◽  
Jung-Suk Sung ◽  
Surendra Shinde ◽  
Jiwook Yang ◽  
...  

Herein, we report the use of a cell-free extract for the extracellular synthesis of silver nanoparticles (AgNPs) and their potential to address the growing threat of multidrug-resistant (MDR) pathogenic bacteria. The reproducibility of AgNP synthesis was good and AgNP formation kinetics were monitored as a function of various reaction factors via ultraviolet-visible absorption spectroscopy. This green method was dependent on the alkaline pH of the reaction mixture. With the addition of dilute sodium hydroxide, well-dispersed AgNPs could be produced in large quantities via the classical nucleation and growth route. The new biosynthetic route enabled the production of AgNPs within a narrow size range of 4 to 17 nm. The AgNPs were characterized using various techniques and their antibacterial activity against MDR pathogenic bacteria was evaluated. Field-emission scanning electron microscopic imaging revealed prominent morphological changes in Staphylococcus aureus cells due to mechanical damage, which led to cell death. Escherichia coli cells showed signs of contraction and intracellular fluid discharge as a consequence of disrupted cell membrane function. This new biologically-assisted extracellular strategy is potentially useful for the decontamination of surfaces and is expected to contribute to the development of new products containing AgNPs.


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


2020 ◽  
Vol 36 (4) ◽  
pp. 87-93
Author(s):  
V.Yu. Reshetova ◽  
A.F. Krivoshchepov ◽  
I.A. Butorova ◽  
N.B. Feldman ◽  
S.V. Lutsenko ◽  
...  

Chitosan beads with colloidal silver nanoparticles inclued in the polymer matrix have been obtained by the introduction of chitosan into an acidified nanosilver sol. Dual interconnection of drops of the resulting solution was then carried out by ionotropic gelation at the first stage and covalent crosslinking of the polymer matrix with adipic acid at the second stage. The surface morphology of the obtained beads was studied by scanning electron microscopy. Data of Fourier transform IR spectroscopy confirmed the formation of covalent bonds between chitosan and adipic acid. The antibacterial activity of obtained beads against S. aureus and E. coli was evaluated using agar diffusion test. It was shown that the сhitosan beads modified with nanostructured silver exhibited an antibacterial effect against the tested strains, and they can be used as a basis for creating biodegradable wound healing dressings with a prolonged antibacterial effect. chitosan, silver nanoparticles, antibacterial activity, wound dressings This work was supported by the "Russian Academic Excellence Project 5-100". The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of the Scientific Project no. 18-29-18039.


2020 ◽  
Vol 21 (10) ◽  
pp. 980-989
Author(s):  
Sampath Shobana ◽  
Sunderam Veena ◽  
S.S.M. Sameer ◽  
K. Swarnalakshmi ◽  
L.A. Vishal

Aims: To evaluate the antibacterial activity of Artocarpus hirsutus mediated seed extract for nanoparticle synthesis. Background: Gastrointestinal bacteria are known for causing deadly infections in humans. They also possess multi-drug resistance and interfere with clinical treatments. Applied nanotechnology has been known to combat such infectious agents with little interference from their special attributes. Here we synthesize silver nanoparticles from Artocarpus hirsutus seed extract against two gastro-intestinal bacterial species: Enterobacter aerogenes and Listeria monocytogenes. Objective: To collect, dry, and process seeds of Artocarpus hirsutus for nanoparticle synthesis. To evaluate the morphological interaction of silver nanoparticles with bacteria. Methods: Artocarpus hirsutus seeds were collected and processed and further silver nanoparticles were synthesized by the co-precipitation method. The synthesized nanoparticles were characterized using XRD, UV, FTIR, and SEM. These nanoparticles were employed to study the antibacterial activity of nanoparticles against Enterobacter aerogenes and Listeria monocytogenes using well diffusion method. Further, morphological interaction of silver nanoparticles on bacteria was studied using SEM. Result: Silver nanoparticles were synthesized using Artocarpus hirsutus seed extract and characterization studies confirmed that silver nanoparticles were spherical in shape with 25-40 nm size. Antibacterial study exhibited better activity against Enterobacter aerogenes with a maximum zone of inhibition than on Listeria monocytogenes. SEM micrographs indicated that Enterobacter aerogenes bacteria were more susceptible to silver nanoparticles due to the absence of cell wall. Also, the size and charge of silver nanoparticles enable easy penetration of the bacterial cell wall. Conclusion: In this study, silver nanoparticles were synthesized using the seed extract of Artocarpus hirsutus for the first time exploiting the fact that Moraceae species have high phytonutrient content which aided in nanoparticle synthesis. This nanoparticle can be employed for large scale synthesis which when coupled with the pharmaceutical industry can be used to overcome the problems associated with conventional antibiotics to treat gastrointestinal bacteria.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Sign in / Sign up

Export Citation Format

Share Document