scholarly journals The potential role of some amino acids with different concentrations, application types and times to manage Meloidogyne javanica on tomato plants

2019 ◽  
Vol 14 (1) ◽  
pp. 11-24
Author(s):  
M. Selim ◽  
Neveen Galal ◽  
Magdy Mahdy
2004 ◽  
Vol 4 (3) ◽  
pp. 31-34 ◽  
Author(s):  
Emina Nakaš-Ićindić ◽  
Asija Začiragić ◽  
Almira Hadžović ◽  
Nešina Avdagić

Endothelin is a recently discovered peptide composed of 21 amino acids. There are three endothelin isomers: endothelin -1 (ET-1), endothelin -2 (ET-2) and endothelin - 3 (ET-3). In humans and animals levels of ET-1, ET-2, ET-3 and big endothelin in blood range from 0,3 to 3 pg/ml. ET-1, ET-2 and ET-3 act by binding to receptors. Two main types of the receptors for endothelins exist and they are referred to as A and B type receptors. Different factors can stimulate or inhibit production of endothelin by endothelial cells. Mechanical stimulation of endothehum, thrombin, calcium ions, epinephrine, angiotensin II, vasopressin, dopamine, cytokines, growth factors stimulate the production of endothelin whereas nitric oxide, cyclic guanosine monophosphate, atrial natriuretic peptide, prostacyclin, bradykinin inhibit its production. Endothelins have different physiological roles in human body but at the same time their actions are involved in the pathogenesis of many diseases.The aim of this review was to present some of, so far, the best studied physiological roles of endothelin and to summarize evidence supporting the potential role of ET in the pathogenesis of certain diseases.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Geng Zou ◽  
Bernardo Bello-Orti ◽  
Virginia Aragon ◽  
Alexander W. Tucker ◽  
Rui Luo ◽  
...  

Abstract Blood inside mammals is a forbidden area for the majority of prokaryotic microbes; however, red blood cells tropism microbes, like “vampire pathogens” (VP), succeed in matching scarce nutrients and surviving strong immunity reactions. Here, we found VP of Mycoplasma, Rhizobiales and Rickettsiales showed significantly higher counts of (AG)n dimeric simple sequence repeats (Di-SSRs) in the genomes, coding and non-coding regions than non Vampire Pathogens (N_VP). Regression analysis indicated a significant correlation between GC content and the span of (AG)n-Di-SSR variation. Gene Ontology (GO) terms with abundance of (AG)3-Di-SSRs shared by the VP strains were associated with purine nucleotide metabolism (FDR < 0.01), indicating an adaptation to the limited availability of purine and nucleotide precursors in blood. Di-amino acids coded by (AG)n-Di-SSRs included all three six-fold code amino acids (Arg, Leu and Ser) and significantly higher counts of Di-amino acids coded by (AG)3, (GA)3 and (TC)3 in VP than N_VP. Furthermore, significant differences (P < 0.001) on the numbers of triplexes formed from (AG)n-Di-SSRs between VP and N_VP in Mycoplasma suggested the potential role of (AG)n-Di-SSRs in gene regulation.


2005 ◽  
Vol 79 (7) ◽  
pp. 4407-4414 ◽  
Author(s):  
Eugénie Hébrard ◽  
Agnès Pinel-Galzi ◽  
Vincent Catherinot ◽  
Gilles Labesse ◽  
Christophe Brugidou ◽  
...  

ABSTRACT Rice yellow mottle virus is classified in five major serotypes; the molecular diversity of the coat protein (CP) is well established, but the amino acids involved in the recognition by discriminant monoclonal antibodies (MAbs) remain unknown. Reconstruction of a phylogenetic tree and sequence alignment of the CP gene of a sample representative of the continental-large diversity were used to identify 10 serospecific amino acids (i.e., conserved in all isolates belonging to the same serotype and distinct in other serotypes). Positions occupied by serospecific residues were localized on the crystal structure of the CP monomer and on modeled capsomers. Structural, molecular, and serological properties of each serotype were analyzed, and subsequently, hypotheses on the potential role of amino acids in discriminating reactions with antibodies were formulated. The residues 114 and 115 (serospecific of Sr1) and 190 (serospecific of Sr2) were localized on the outer surface of the capsid and might be directly involved in the immunoreactivity with MAb D and MAb A, respectively. In contrast, residues 180 (Sr3) and 178 (Sr5) lay within the inner surface of the capsid. To understand the role of these internal positions in the recognition with the antibodies, two substitutions (T180K and G178D) were introduced in the CP of an infectious clone. These mutations modified the antigenicity with MAb G and MAb E discriminating Sr3 and Sr5, respectively, while the reaction with MAb D remained unaffected. This result suggests an indirect effect of these two internal mutations on local immunostructure while the global structure was maintained.


2021 ◽  
Vol 11 ◽  
Author(s):  
Marina Alfosea-Simón ◽  
Silvia Simón-Grao ◽  
Ernesto Alejandro Zavala-Gonzalez ◽  
Jose Maria Cámara-Zapata ◽  
Inmaculada Simón ◽  
...  

Agriculture is facing a great number of different pressures due to the increase in population and the greater amount of food it demands, the environmental impact due to the excessive use of conventional fertilizers, and climate change, which subjects the crops to extreme environmental conditions. One of the solutions to these problems could be the use of biostimulant products that are rich in amino acids (AAs), which substitute and/or complement conventional fertilizers and help plants adapt to climate change. To formulate these products, it is first necessary to understand the role of the application of AAs (individually or as a mixture) in the physiological and metabolic processes of crops. For this, research was conducted to assess the effects of the application of different amino acids (Aspartic acid (Asp), Glutamic acid (Glu), L-Alanine (Ala) and their mixtures Asp + Glu and Asp + Glu + Ala on tomato seedlings (Solanum lycopersicum L.). To understand the effect of these treatments, morphological, physiological, ionomic and metabolomic studies were performed. The results showed that the application of Asp + Glu increased the growth of the plants, while those plants that received Ala had a decreased dry biomass of the shoots. The greatest increase in the growth of the plants with Asp + Glu was related with the increase in the net CO2 assimilation, the increase of proline, isoleucine and glucose with respect to the rest of the treatments. These data allow us to conclude that there is a synergistic effect between Aspartic acid and Glutamic acid, and the amino acid Alanine produces phytotoxicity when applied at 15 mM. The application of this amino acid altered the synthesis of proline and the pentose-phosphate route, and increased GABA and trigonelline.


2021 ◽  
Author(s):  
Shikha Jindal ◽  
Poonam Jyoti ◽  
Venkatesh V Kareenhalli ◽  
Shyam Kumar Masakapalli

Microbial metabolism of long-chain fatty acids (LCFA; > C12) is of relevance owing to their presence in various nutrient niches. Microbes have evolved to metabolize LCFA by expressing relevant genes coordinated by various transcriptional regulators. Among the global transcriptional regulators, the metabolic control conferred by arcA (aerobic respiration control) under a LCFA medium is lacking. This work is targeted to unravel the metabolic features of E.coli MG1655 and its knockout strain ΔarcA under oleate (C18:1) as a sole carbon source, providing novel insights into the flexibility of the global regulators in maintaining the cellular physiology. Owing to the availability and cost of stable isotope LCFA tracers, we adopted a novel kinetic 13C dilution strategy. This allowed us to quantify the 13C dilution rates in the amino acids that retro-biosynthetically shed light on the central metabolic pathways in actively growing cells. Our data comprehensively mapped oleate oxidization in E.coli via the pathways of β-oxidation, TCA cycle, anaplerotic and gluconeogenesis. Interestingly, arcA knockout showed expeditious growth (~60%) along with an increased oleate utilization rate (~55%) relative to the wild-type. ΔarcA also exhibited higher 13C dilution rates (> 20%) in proteinogenic amino acids than the wild-type. Overall, the study established the de-repression effect conferred by ΔarcA in E.coli, which resulted in a phenotype with reprogrammed metabolism favouring higher oleate assimilation. The outcomes suggest rational metabolic engineering of regulators as a strategy to develop smart cells for enhanced biotransformation of LCFA. This study also opens an avenue for adopting a kinetic 13C dilution strategy to decipher the cellular metabolism of a plethora of substrates, including other LCFA in microbes.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alejandro Ruiz-Riquelme ◽  
Alison Mao ◽  
Marim M. Barghash ◽  
Heather H. C. Lau ◽  
Erica Stuart ◽  
...  

AbstractWhen injected into genetically modified mice, aggregates of the amyloid-β (Aβ) peptide from the brains of Alzheimer’s disease (AD) patients or transgenic AD mouse models seed cerebral Aβ deposition in a prion-like fashion. Within the brain, Aβ exists as a pool of distinct C-terminal variants with lengths ranging from 37 to 43 amino acids, yet the relative contribution of individual C-terminal Aβ variants to the seeding behavior of Aβ aggregates remains unknown. Here, we have investigated the relative seeding activities of Aβ aggregates composed exclusively of recombinant Aβ38, Aβ40, Aβ42, or Aβ43. Cerebral Aβ42 levels were not increased in AppNL−F knock-in mice injected with Aβ38 or Aβ40 aggregates and were only increased in a subset of mice injected with Aβ42 aggregates. In contrast, significant accumulation of Aβ42 was observed in the brains of all mice inoculated with Aβ43 aggregates, and the extent of Aβ42 induction was comparable to that in mice injected with brain-derived Aβ seeds. Mice inoculated with Aβ43 aggregates exhibited a distinct pattern of cerebral Aβ pathology compared to mice injected with brain-derived Aβ aggregates, suggesting that recombinant Aβ43 may polymerize into a unique strain. Our results indicate that aggregates containing longer Aβ C-terminal variants are more potent inducers of cerebral Aβ deposition and highlight the potential role of Aβ43 seeds as a crucial factor in the initial stages of Aβ pathology in AD.


2004 ◽  
Vol 72 (8) ◽  
pp. 4751-4762 ◽  
Author(s):  
Hesham M. Al-Younes ◽  
Volker Brinkmann ◽  
Thomas F. Meyer

ABSTRACT Chlamydiae are obligate intracellular pathogens that replicate within a membrane-bound compartment (the inclusion) and are associated with important human diseases, such as trachoma, pneumonia, and atherosclerosis. We have examined the interaction of the host autophagic pathway with Chlamydia trachomatis serovar L2 by using the specific autophagosomal stain monodansylcadaverine, antibodies to autophagosome-associated markers, and traditionally used autophagic inhibitors, particularly 3-methyladenine and amino acids. Chlamydial inclusions did not sequester monodansylcadaverine, suggesting absence of fusion with autophagosomes. Interestingly, exposure of cultures infected for 19 h to 3-methyladenine or single amino acids until the end of infection (44 h) caused various degrees of abnormalities in the inclusion maturation and in the progeny infectivity. Incubation of host cells with chemicals throughout the entire period of infection modulated the growth of Chlamydia even more dramatically. Remarkably, autophagosomal markers MAP-LC3 and calreticulin were redistributed to the inclusion of Chlamydia, a process that appears to be sensitive to 3-methyladenine and some amino acids. The present data indicate the lack of autophagosomal fusion with the inclusion because it was devoid of monodansylcadaverine and no distinct rim of autophagosomal protein-specific staining around the inclusion could be observed. However, high sensitivity of Chlamydia to conditions that could inhibit host autophagic pathway and the close association of MAP-LC3 and calreticulin with the inclusion membrane still suggest a potential role of host autophagy in the pathogenesis of Chlamydia.


Sign in / Sign up

Export Citation Format

Share Document