scholarly journals Comparison of Satellite Images Classification Techniques using Landsat-8 Data for Land Cover Extraction

Author(s):  
Soha Ahmed
2020 ◽  
Vol 956 (2) ◽  
pp. 40-49
Author(s):  
Le Hung Trinh ◽  
Dinh Sinh Mai ◽  
V.R. Zablotskii

In recent years, land cover changes very quickly in urban areas due to the impact of population growth and socio-economic development. The authors present the method of land cover/land use classification based on the combination of Sentinel 2 and Landsat 8 multi-resolution satellite images. A middle infrared band (band 11), a near infrared (band 8) of Sentinel 2 image and a thermal infrared one (band 10) of Landsat 8 image were used to calculate EBBI (Enhanced Built-up and Barreness Index). The EBBI index and Sentinel 2 spectral bands with spatial resolution 10 m (band 2, 3, 4, 8) were used to classify the land cover. The obtained results showed that, the method of land cover classification based on combination of Sentinel 2 and Landsat 8 satellite images improves the overall accuracy by about 5 % compared with the one using only Sentinel 2 data. The results obtained at the study can be used for the management, assessment and monitoring the status and dynamics of land cover in urban areas.


2016 ◽  
Vol 10 (2) ◽  
pp. 53-62 ◽  
Author(s):  
Loránd Szabó ◽  
Márton Deák ◽  
Szilárd Szabó

Satellite images are important information sources of land cover analysis or land cover change monitoring. We used the sensors of four different spacecraft: TM, ETM+, OLI and ALI. We classified the study area using the Maximum Likelihood algorithm and used segmentation techniques for training area selection. We validated the results of all sensors to reveal which one produced the most accurate data. According to our study Landsat 8’s OLI performed the best (96.9%) followed by TM on Landsat 5 (96.2%) and ALI on EO-1 (94.8%) while Landsat 7’s ETM+ had the worst accuracy (86.3%).


Author(s):  
Babita Singh

Abstract: Remote sensing and Geographic information system (GIS) techniques can be used for the changing pattern of landscape. The study was conducted in Dehradun, Haridwar and Pauri Garhwal Districts of Uttarakhand State, India. In order to understand dynamics of landscape and to examine changes in the land use/cover due to anthropogenic activities, two satellite images (Landsat 5 and Landsat 8) for 1998 and 2020 were used. Google Earth Engine was used to perform supervised classification. Spectral indices (NDVI, MNDWI, SAVI, NDBI) were calculated in order to identify land cover classes. Both 1998 and 2020 satellite images were classified broadly into six classes namely agriculture, built-up, dense forest, open forest, scrub and waterbody. Using high resolution google earth satellite images and visual interpretation, overall accuracy assessment was performed. For land cover/use change analysis, these images were imported to GIS platform. Landscape configuration was observed by calculating various landscape metrices Images. It was observed that scrub land area had increased from 11 % to 14 % but a decrease in agriculture by 4.65 %. The increased value of NP, PD, PLAND, LPI and decrease in AI landscape indices shows that land fragmentation had increased since 1998. The most fragmented classes were scrub (PD - 3.32 to 5.18) and open forest (PD - 3.57 to 5.07). Decrease in AI for open forest, agriculture, built-up indicated that more fragmented patches of these classes were present. The result confirmed increase in the fragmentation of landscape from 1998 onwards. Keywords: GIS, LULC, landscape metrics, Remote Sensing


2015 ◽  
Vol 74 (10) ◽  
Author(s):  
Nur Anis Mahmon ◽  
Norsuzila Ya’acob ◽  
Azita Laily Yusof ◽  
Jasmee Jaafar

Land use and land cover (LU/LC) classification of remotely sensed data is an important field of research by which it is commonly used in remote sensing applications. In this study, the different types of classification techniques were compared using different RGB band combinations for classifying several satellite images of some parts of Selangor, Malaysia. For this objective, the classification was made using Landsat 8 satellite images and the Erdas Imagine software as the image processing package. From the classification output, the accuracy assessment and kappa statistic were evaluated to get the most accurate classifier. Optimal performance was identified by validating the classification results with ground truth data. From the results of the classified images, the Maximum Likelihood technique (overall accuracy 82.5%) was the highest and most applicable for satellite image classifications as compared with Mahalanobis Distance and Minimum Distance. Whereas for land use and land cover mapping, the RGB 4, 3, 2 band combinations were found to be more reliable. An accurate classification can produce a correct LU/LC map that can be used for various purposes.  


2020 ◽  
Vol 2 ◽  
pp. 27-31
Author(s):  
Sarah Hanim Samsudin ◽  
Anita Setu ◽  
Alyaa Filza Effendy ◽  
Mohd. Nadzari Ismail

Increase demand of electricity has driven the exploration of Hulu Terengganu hydroelectricity dam as an option to generate electric power supply. Therefore, as a way to monitor the landscape changes, spectral indices were used to study on the spatial-temporal changes over the Hulu Terengganu catchment area. Spectral indices technique was applied on satellite images which acquired on three different years to describe the changes before the construction phase, during the construction phase and post-construction phase. Satellite images used in this study are SPOT-5 and Landsat 7 for year 2006, SPOT-5 and Landsat 8 for year 2014 and Spot-7 and Sentinel 2 for year 2018. Alteration of the land use and land cover has recorded degradation of the forest area by -5.53% during the dam construction phase (2014) and -8.35% during post-construction phase (2018). It also found that water body has remarkable change of 10,141% increase from 2014 to 2018. The result from this study would be useful as an overview for future planning, decision making and dam management activity related to the Hulu Terengganu hydroelectric dam operation


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2021 ◽  
Vol 13 (4) ◽  
pp. 606
Author(s):  
Tee-Ann Teo ◽  
Yu-Ju Fu

The spatiotemporal fusion technique has the advantages of generating time-series images with high-spatial and high-temporal resolution from coarse-resolution to fine-resolution images. A hybrid fusion method that integrates image blending (i.e., spatial and temporal adaptive reflectance fusion model, STARFM) and super-resolution (i.e., very deep super resolution, VDSR) techniques for the spatiotemporal fusion of 8 m Formosat-2 and 30 m Landsat-8 satellite images is proposed. Two different fusion approaches, namely Blend-then-Super-Resolution and Super-Resolution (SR)-then-Blend, were developed to improve the results of spatiotemporal fusion. The SR-then-Blend approach performs SR before image blending. The SR refines the image resampling stage on generating the same pixel-size of coarse- and fine-resolution images. The Blend-then-SR approach is aimed at refining the spatial details after image blending. Several quality indices were used to analyze the quality of the different fusion approaches. Experimental results showed that the performance of the hybrid method is slightly better than the traditional approach. Images obtained using SR-then-Blend are more similar to the real observed images compared with images acquired using Blend-then-SR. The overall mean bias of SR-then-Blend was 4% lower than Blend-then-SR, and nearly 3% improvement for overall standard deviation in SR-B. The VDSR technique reduces the systematic deviation in spectral band between Formosat-2 and Landsat-8 satellite images. The integration of STARFM and the VDSR model is useful for improving the quality of spatiotemporal fusion.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


Sign in / Sign up

Export Citation Format

Share Document