scholarly journals Geospatial modeling of water supply distribution system: A case study of Dehradun city, India

2021 ◽  
Author(s):  
A. K. Jaiswal ◽  
P. K. Thakur ◽  
P. Kumar ◽  
S. Kannaujiya

Abstract Water utilities form the core part of any urban infrastructure. A spatial database of water distribution system (WDS) for Dehradun city has been created in a geographic information system (GIS) environment, while drawing data inputs from diverse sources and water supply-demand gap analysis has been performed. Environmental Protection Agency Network (EPANET, 2.0) has been used to analyze the WDS to explore its reliability in current and future scenarios. Mapping of the existing 564 km long distribution network revealed that more than three-quarters of the system has outdated water pipelines. An accuracy of 93% for pipe diameter estimation has been obtained upon validation by ground penetrating radar (GPR) survey. Water supply-demand gap analysis confirmed that although Dehradun city has surplus supply, it suffers from scarcity, mainly due to the unsatisfactory condition of the existing WDS. Twenty-seven percent of the existing pipes are smaller than the prescribed standards; there is an undesirable practice of direct pumping of water from tube wells into the network and storage tanks are required for at least 29 locations in the network. A 24-hour extended period EPANET simulation helped to identify the areas where water supply network experienced very low or negative pressure.

2018 ◽  
Vol 8 (3) ◽  
pp. 415-428 ◽  
Author(s):  
Kuitakwashe Nhongo ◽  
Zvikomborero Hoko ◽  
Jameson Kugara

Abstract Formation of disinfectant by-products was investigated in the Harare water supply system from February to April 2015. Sampling sites were selected from the lake, Morton Jaffray Water Treatment Works and critical points in the distribution system. The spatial variations of trihalomethanes and selected water quality parameters were investigated for 15 sampling points in 5 sampling campaigns to assess suitability for drinking. All trihalomethane species were measured, namely chloroform, bromodichloromethane, dibromochloromethane and bromoform. Only chloroform and bromodichloromethane were detected. The study confirmed that there is trihalomethanes formation in the Harare water distribution system and that it is affected by the residence time and presence of organic matter in the system. However, the levels of trihalomethanes are generally within the levels suggested by the World Health Organization. Only bromodichloromethane presents a risk for long-term exposure as it had levels that exceeded the limit for long-term exposure suggested by the United States Environmental Protection Agency. Bromodichloromethane, turbidity and free residual chlorine levels were not suitable for drinking in some of the zones. Boosting of chlorine residuals is necessary especially in areas with free chlorine less than 0.2 mg/L. Injection of ammonia, periodic cleaning of storage reservoirs, and flushing of lines will reduce trihalomethanes formation.


The study presents the hydraulic design and analysis of Rural Water Distribution System (WDS) for Nava shihora region of zone 1 of the state of Gujarat, India. Water supply distribution system is designed for this study for population estimated for future 30 years. LOOP 4.0 and Water Gems v8i software have been used and the results are compared to determine the economical size of pipes for water distribution system. The economical size of pipes of water supply distribution system is designed by considering the constraints; residual pressure at each node, velocity of flow in pipe, head loos in pipes, material of pipes, elevated service reservoir level, peak factor and available commercial pipe diameters. Further water distribution system has been analyzed for extended period simulation (EPS) for the present population scenario for intermittent water supply using Water Gems v8i. Further water supply system is analyzed the residual chlorine concentration at nodes and in the pipe links and also the total cost of water supply system of rural region is estimated.


2021 ◽  
Author(s):  
Dessalegn Geleta Ebsa ◽  
Fekadu Fufa

Abstract. The study evaluates the hydraulic analysis of water supply distribution network using water GEMS v8i. which used for modeling and Simulation of hydraulic parameters in the distribution networks. The hydraulic parameters which analyzed by using this software were junction pressure, velocity of water in networking system, and nodal demands and the overall result of water supply did not satisfied demand. The water distribution system has been analyzed for steady state and extended period simulation for the present population scenario for intermittent water supply using water Gems v8i. About 14 percent of the total number of nodes analyzed had negative pressures while 68 percent of the nodes had pressures less than the adopted pressure for the analysis. These negative pressures indicate that there is inadequate head within the distribution network for water conveyance to all the sections. In the same manner 85.6 percent of flow velocities in the pipes were within the adopted velocity while around 14.4 percent of the velocities exceeded the adopted velocity. The results in this study revealed that the performance of the water distribution system of under current demand is inefficient.


2020 ◽  
Vol 21 (2) ◽  
pp. 227-235
Author(s):  
Muhammad Rizki Apritama ◽  
I Wayan Koko Suryawan ◽  
Yosef Adicita

ABSTRACTThe clean water supply system network on Lengkang Kecil Island was developed in 2019. A small portion of the community's freshwater comes from harvesting rainwater and dug wells, which are only obtained during the rainy season. The primary source of clean water used by the community comes from underwater pipelines with a daily discharge of 0.86 l/sec. The water supply of the Lengkang Kecil Island community is 74.3 m3/day, with 146 House Connections (HCs) and to serve public facilities such as elementary schools, primary health centers, and mosques. Hydraulic evaluation of clean water distribution using EPANET 2.0 software on flow velocity shows the lowest rate of 0.29 m/s and the highest of 1.21 m/s. The lowest pressure value in the distribution system is 6.94-6.96 m and headloss units in the range 0.08-0.25 m/km. These three criteria are still within the distribution network design criteria (feasible). A carbon footprint can be calculated from each activity from the analysis of the evaluation of clean water distribution networks. The most massive emissions came from pumping activities with 131 kg CO2-eq, followed by emissions from wastewater 62.5 kgCO2-eq. Further research is needed to determine the quality of wastewater and the design for a centralized wastewater treatment plant (IPALT) to improve Lengkang Kecil Island residents' living standards.Keywords: Lengkang Kecil Island, water, EPANET, carbon footprintABSTRAKJaringan sistem penyediaan air bersih pada Pulau Lengkang Kecil dimulai pada tahun 2019. Sebagian kecil air bersih yang digunakan masyarakat berasal dari pemanenan air hujan dan sumur gali yang hanya didapat pada musim hujan. Sumber air bersih utama yang digunakan masyarakat berasal dari pengaliran perpipaan bawah laut dengan debit harian 0,86 l/detik. Kebutuhan air masyarakat Pulau Lengkang Kecil adalah 74,3 m3/hari dengan 146 Sambungan Rumah (SR) serta untuk melayani fasilitas umum seperti sekolah dasar (SD), puskesmas, dan masjid. Evaluasi hidrolis distribusi air bersih dengan menggunakan software EPANET 2.0 terhadap kriteria kecepatan aliran menunjukkan nilai terendah 0,29 m/s dan tertinggi 1,21 m/s. Nilai sisa tekan dalam sistem distribusi adalah 6,94–6,96 m dan unit headloss pada kisaran 0,08–0,25 m/km. Ketiga kriteria ini masih berada dalam kriteria desain jaringan distribusi (layak). Dari analisis evaluasi jaringan distribusi air bersih, dapat dihitung jejak karbon yang dihasilkan dari setiap kegiatannya. Emisi terbesar berasal dari kegiatan pemompaan dengan nilai 131 kgCO2-eq, diikuti dengan emisi yang berasal dari air limbah dengan nilai 62,5 kgCO2-eq. Penelitian lanjutan diperlukan untuk mengetahui kualitas dari air limbah dan desain untuk instalasi pengolahan air limbah terpusat (IPALT) untuk meningkatkan taraf hidup penduduk Pulau Lengkang Kecil.Kata kunci: Pulau Lengkang Kecil, air, EPANET, jejak karbon


2013 ◽  
Vol 438-439 ◽  
pp. 1551-1554
Author(s):  
Shuang Hua He

Conventional demand-driven models of water supply system are formulated under the assumption that nodal demands are statistic constants, which is not suitable for the cases where nodal pressure is not sufficient for supplying the required demand. An efficient approach for pressure-dependent demand analysis was developed to simulate the hydraulic states of the network for low pressure scenarios, and the mean-first-order-second-moment method was introduced to do the functional reliability analysis of post-earthquake water supply system, which can be applied to further study for seismic performance control analysis of water distribution system.


2005 ◽  
Vol 15 (1) ◽  
pp. 93-109 ◽  
Author(s):  
Charles R. Ortloff

The water supply and distribution system of the Nabataean city of Petra in southwestern Jordan has been explored and mapped. Analysis of the system indicates exploitation of all possible water resources using management techniques that balance reservoir storage capacity with continuous flow pipeline systems to maintain a constant water supply throughout the year. Nabataean Petra was founded c. 300 bc; urban development progressed with later Roman administration of the city starting at ad 106; Byzantine occupation continued to the seventh century ad. Trade networks that extended throughout much of the ancient Near East and Mediterranean world intersected at Petra, and brought not only strategic and economic prominence, but also impetus to develop water resources fully to sustain demands of increasing population and city elaboration. City development was influenced by artistic, cultural and technological borrowings from Seleucid, Syro-Phoenician, Greek and Roman civilizations; the Petra water-distribution system included hydraulic technologies derived from these contacts as well as original technical innovations that helped to maintain the high living standard of city dwellers throughout the centuries. Analysis of the Nabataean water network indicates design criteria that promote stable flows and use sequential particle-settling basins to purify potable water supplies. They also promote open channel flows within piping at critical (maximum) flow rates that avoid leakage associated with pressurized systems and have the design function to match the spring supply rate to the maximum carrying capacity of a pipeline. This demonstration of engineering capability indicates a high degree of cognitive skill in solving complex hydraulic problems to ensure a stable water supply and may be posited as a key reason behind the many centuries of flourishing city life.


Author(s):  
Chalchisa Milkecha ◽  
Habtamu Itefa

This study was conducted generally by aiming assessment of the hydraulic performance of water distribution systems of Addis Ababa Science and Technology University (AASTU). In line with the main objective, this study addressed, (1) pinpointing problems of existing water supply versus demand deficit (2) evaluating the hydraulic performance of water distribution system using water GEMS and (3) recommended alternative methods for improving water demand scenarios. The University’s water supply distribution network layout was a looped system and the flow of water derived by both gravity and pressurized system. The gravity flow served for the academic and administrative staffs whereas the pressurized system of the network fed the students dormitories, cafeteria’s etc. The study revealed the existence of unmet minimum pressure requirement around the student dormitories which accounts 25.64% below the country’s building code standard during the peak hour consumption. The result of the water demand projection showed an increment of 2.5 liter per capita demand (LPCD) in every five years. Hence, first, the university’s water demand was projected and then hydraulic parameters such as; pressure, head loss and velocity were modeled for both the existing and the improved water supply distribution. The finding of the study was recommended to the university’s water supply project and institutional development offices for its future modification and rehabilitation works.


Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2096
Author(s):  
Samayan Narayanamoorthy ◽  
Veerappan Annapoorani ◽  
Samayan Kalaiselvan ◽  
Daekook Kang

Every country’s influence and livelihood is centered on that country’s water source. Therefore, many studies are being conducted worldwide to improve and sustain water resources. In this research paper, we have selected and researched the water scheme for groundwater recharge and drinking water supply of drought prone areas. The water project is aimed at connecting the drought prone areas of the three districts of Tamil Nadu to filling up the ponds in their respective villages and raising the ground water level and meeting the drinking water requirement. We have chosen a multi-criteria decision method to select the best alternative in a complex situation. When reviewing the implementation of this water project, many experts and people who will benefit from this project may have some hesitation and ambiguity in their suggestion on choosing the best water distribution system.We believe that the benefits of this project can be fully availed of if we choose a water distribution system. Our contribution in this article is to choose the best water distribution system for this project by use of our proposed multi-criteria decision making (MCDM) methods, hesitant fuzzy standard deviation with multi-objective optimization method by ratio analysis (HFSDV-MOORA), hesitant fuzzy standard deviation with technique, for order preference by similarity to an ideal solution (HFSDV-TOPSIS) and hesitant fuzzy standard deviation with VIsekriterijumsko Kompromisno Rangiranje (HFSDV-VIKOR), which will provide the best solution for improving the water resource for the drought-prone areas of three districts. Finally, we have identified and compared the correlation coefficient between proposed methods. As a result of the study, it has been found that the best water supply system is closed concrete pipes laid along agricultural land through the rural areas.


Author(s):  
Marian Kwietniewski ◽  
Katarzyna Miszta-Kruk ◽  
Kaja Niewitecka ◽  
Mirosław Sudoł ◽  
Krzysztof Gaska

The security of water delivery of the required quality by water supply networks is identified with the concept of reliability. Therefore, a method of reliability evaluation of water distribution of the required quality was developed. The method is based on the probabilistic character of secondary water contamination in the water supply network. Data for the method are taken from monitoring of the water distribution system. The method takes into consideration the number and locations of individual measurement points and the results of the tests of water quality indicators at these points. The sets of measurement points and water quality indicators constitute a matrix research (observation) field in the model. The proposed method was implemented to assess the reliability of a water distribution process with respect to water with the required microbiological quality indicators in a real distribution system.


Sign in / Sign up

Export Citation Format

Share Document