scholarly journals Optimization of dam's spillway design under climate change conditions

2020 ◽  
Vol 22 (4) ◽  
pp. 916-936
Author(s):  
Ahmad Ferdowsi ◽  
Sayed-Farhad Mousavi ◽  
Saeed Farzin ◽  
Hojat Karami

Abstract The present research introduces a model to find the best shape of a dam's spillway under climate change impacts, considering a benchmark problem (i.e., Ute Dam's labyrinth spillway in the Canadian River watershed, New Mexico, USA). A spillway design is based not only on historical data but also on the future hydrologic events. Climate variables were predicted for the years 2021–2050 based on three representative concentration pathway (RCP2.6, RCP4.5, and RCP8.5) scenarios of the general circulation model from the fifth phase of the coupled model intercomparison project (CMIP5) using the statistical downscaling model. Streamflow at the USGS 07226500 streamgage was simulated by a rainfall–runoff model with predicted data. Instantaneous peak flow was estimated using an empirical method. Flood frequency analysis was used for the estimation of the design flood. The shuffled frog-leaping algorithm (SFLA) is used to optimize a labyrinth spillway design and its results were compared with two other nature-inspired algorithms: invasive weed optimization (IWO) and cuckoo search (CS). The spillway was optimized once with the actual design flood (16,143 m3/s) and again with the design flood under climate change (12,250 m3/s). Results revealed that optimization with realistic design flood reduced the concrete volume of the spillway by 37% and under climate change by 43% using the SFLA.

2016 ◽  
Vol 48 (5) ◽  
pp. 1391-1401 ◽  
Author(s):  
Parisa Hosseinzadehtalaei ◽  
Hossein Tabari ◽  
Patrick Willems

Projections of evapotranspiration form the basis of future runoff and water availability assessment in a climate change context. The scarcity of data or insufficiency of time/funds compels the application of simple reference evapotranspiration (ETo) methods requiring less meteorological inputs for ETo projections which adds uncertainty to the projected changes. This study investigates the bias in ETo climate change signals derived from seven simple temperature- and radiation-based methods (Blaney–Criddle, Hargreaves–Samani, Schendel, Makkink, Turc, Jensen–Haise, Tabari) compared with that from the standard Penman–Monteith FAO 56 method on the basis of 12 general circulation model (GCM) outputs from the Coupled Model Intercomparison Project Phase 5 for central Belgium for four future greenhouse gas scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5). The results show the lack of conformity on the amount of ETo changes between the simple and standard methods, with biases of over 100% for some simple methods. The uncertainty affiliated with ETo methods for monthly ETo changes is smaller but of comparable magnitude to GCM uncertainty, which is usually the major source of uncertainty, and larger for daily extreme ETo changes. This emphasizes the imperative of addressing the uncertainty associated with ETo methods for quantifying the hydrological response to climate change.


2017 ◽  
Author(s):  
Paul J. Valdes ◽  
Edward Armstrong ◽  
Marcus P. S. Badger ◽  
Catherine D. Bradshaw ◽  
Fran Bragg ◽  
...  

Abstract. Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea-ice and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both of ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the coupled general circulation model HadCM3. This model was originally developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies but is now largely being replaced by more recent models. However, it continues to be extensively used by the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol and elsewhere. Over time, adaptations have been made to the base HadCM3 model. These adaptations mean that the original documentation is not entirely representative, and several other configurations are in use which now differ from the originally described model versions. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, including the atmosphere-only model (HadAM3), the coupled model with a low resolution ocean (HadCM3L), the high resolution atmosphere only model (HadAM3H), the regional model (HadRM3) and a fast coupled model (FAMOUS), which together make up HadCM3@Bristol version 1.0. These also include three versions of the land surface scheme. By comparing with observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation and vegetation. This evaluation, combined with the relatively fast computational speed (up to 2000× faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3 family of coupled climate models, particularly for quantifying uncertainty and for long multi-millennial scale simulations.


2009 ◽  
Vol 22 (21) ◽  
pp. 5686-5697 ◽  
Author(s):  
Paulo Nobre ◽  
Marta Malagutti ◽  
Domingos F. Urbano ◽  
Roberto A. F. de Almeida ◽  
Emanuel Giarolla

Abstract The effects of Amazon deforestation on climate change are investigated using twin numerical experiments of an atmospheric general circulation model (AGCM) with prescribed global sea surface temperature and the same AGCM coupled to an ocean GCM (CGCM) over the global tropics. An ensemble approach is adopted, with 10-member ensemble averages of a control simulation compared with perturbed simulations for three scenarios of Amazon deforestation. The latest 20 yr of simulation from each experiment are analyzed. Local surface warming and rainfall reduction are simulated by both models over the Amazon basin. The coupled model presented a rainfall reduction that is nearly 60% larger compared to its control run than those obtained by the AGCM. The results also indicated that both the fraction of the deforested area and the spatial continuity of the vegetated area might be important for modulating global climate variability and change. Additionally, significant remote atmospheric responses to Amazon deforestation scenarios are detected for the coupled simulations, which revealed global ocean and atmosphere circulation changes conducive to enhanced ocean–atmosphere variability over the Pacific Ocean. This, in turn, is interpreted as a manifestation of enhanced El Niño–Southern Oscillation (ENSO) activity over the Pacific and a positive feedback contributing to the extra rainfall reduction over the Amazon on the coupled simulations.


2009 ◽  
Vol 22 (10) ◽  
pp. 2639-2658 ◽  
Author(s):  
Grant Branstator ◽  
Frank Selten

Abstract A 62-member ensemble of coupled general circulation model (GCM) simulations of the years 1940–2080, including the effects of projected greenhouse gas increases, is examined. The focus is on the interplay between the trend in the Northern Hemisphere December–February (DJF) mean state and the intrinsic modes of variability of the model atmosphere as given by the upper-tropospheric meridional wind. The structure of the leading modes and the trend are similar. Two commonly proposed explanations for this similarity are considered. Several results suggest that this similarity in most respects is consistent with an explanation involving patterns that result from the model dynamics being well approximated by a linear system. Specifically, the leading intrinsic modes are similar to the leading modes of a stochastic model linearized about the mean state of the GCM atmosphere, trends in GCM tropical precipitation appear to excite the leading linear pattern, and the probability density functions (PDFs) of prominent circulation patterns are quasi-Gaussian. There are, on the other hand, some subtle indications that an explanation for the similarity involving preferred states (which necessarily result from nonlinear influences) has some relevance. For example, though unimodal, PDFs of prominent patterns have departures from Gaussianity that are suggestive of a mixture of two Gaussian components. And there is some evidence of a shift in probability between the two components as the climate changes. Interestingly, contrary to the most prominent theory of the influence of nonlinearly produced preferred states on climate change, the centroids of the components also change as the climate changes. This modification of the system’s preferred states corresponds to a change in the structure of its dominant patterns. The change in pattern structure is reproduced by the linear stochastic model when its basic state is modified to correspond to the trend in the general circulation model’s mean atmospheric state. Thus, there is a two-way interaction between the trend and the modes of variability.


2012 ◽  
Vol 12 (6) ◽  
pp. 3131-3145 ◽  
Author(s):  
A. P. K. Tai ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
E. M. Leibensperger ◽  
L. Zhang ◽  
...  

Abstract. We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components) and compared to results from the GEOS-Chem chemical transport model (CTM). All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH) is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM) using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign), with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos) when diagnosing the effect of climate change on PM2.5, and suggest that analysis of meteorological modes of variability provides a computationally more affordable approach for this purpose than coupled GCM-CTM studies.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2017 ◽  
Vol 24 (4) ◽  
pp. 681-694 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiong Deng ◽  
Shaoqing Zhang ◽  
Zhengyu Liu ◽  
Chang Liu ◽  
...  

Abstract. Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.


2018 ◽  
Vol 8 ◽  
pp. 1433-1451 ◽  
Author(s):  
Pantazis Georgiou ◽  
Panagiota Koukouli

The regional as well as the international crop production is expected to be influenced by climate change. This study describes an assessment of simulated potential cotton yield using CropSyst, a cropping systems simulation model, in Northern Greece. CropSyst was used under the General Circulation Model CGCM3.1/T63 of the climate change scenario SRES B1 for time periods of climate change 2020-2050 and 2070-2100 for two planting dates. Additionally, an appraisal of the relationship between climate variables, potential evapotranspiration and cotton yield was done based on regression models. Multiple linear regression models based on climate variables and potential evapotranspiration could be used as a simple tool for the prediction of crop yield changes in response to climate change in the future. The CropSyst simulation under SRES B1, resulted in an increase by 6% for the period 2020-2050 and a decrease by about 15% in cotton yield for 2070-2100. For the earlier planting date a higher increase and a slighter reduction was observed in cotton yield for 2020-2050 and 2070-2100, respectively. The results indicate that alteration of crop management practices, such as changing the planting date could be used as potential adaptation measures to address the impacts of climate change on cotton production.


Author(s):  
Saeed Farzin ◽  
Mahdi Valikhan Anaraki

Abstract In the present study, for the first time, a new strategy based on a combination of the hybrid least-squares support-vector machine (LS-SVM) and flower pollination optimization algorithm (FPA), average 24 general circulation model (GCM) output, and delta change factor method has been developed to achieve the impacts of climate change on runoff and suspended sediment load (SSL) in the Lighvan Basin in the period (2020–2099). Also, the results of modeling were compared to those of LS-SVM and adaptive neuro-fuzzy inference system (ANFIS) methods. The comparison of runoff and SSL modeling results showed that the LS-SVM-FPA algorithm had the best results and the ANFIS algorithm had the worst results. After the acceptable performance of the LS-SVM-FPA algorithm was proved, the algorithm was used to predict runoff and SSL under climate change conditions based on ensemble GCM outputs for periods (2020–2034, 2035–2049, 2070–2084, and 2085–2099) under three scenarios of RCP2.6, RCP4.5, and RCP8.5. The results showed a decrease in the runoff in all periods and scenarios, except for the two near periods under the RCP2.6 scenario for runoff. The predicted runoff and SSL time series also showed that the SSL values were lower than the average observation period, except for 2036–2039 (up to an 8% increase in 2038).


Sign in / Sign up

Export Citation Format

Share Document