scholarly journals Coupling the Xinanjiang model and wavelet-based random forests method for improved daily streamflow simulation

Author(s):  
Jian Wang ◽  
Weimin Bao ◽  
Qianyu Gao ◽  
Wei Si ◽  
Yiqun Sun

Abstract Daily streamflow modeling is an important tool for water resources management and flood mitigation. This study compared the performance of the Xinanjiang (XAJ) model and random forests (RF) method in a daily streamflow simulation, and proposed several hybrid models based on the XAJ model, wavelet analysis, and RF method (including XAJ-RF model, WRF model, and XAJ-WRF model). The proposed methods were applied to Shiquan station, located in the Upper Han River basin in China. Five performance measures (NSE, RMSE, PBIAS, MAE, and R) were adopted to evaluate the modeling accuracy. Results showed that XAJ-RF model had a relatively higher level of accuracy than that of the XAJ model and the RF model. Compared to the RF and XAJ-RF models, the performance statistics of WRF and XAJ-WRF were better. The results indicated that the coupled XAJ-RF model can be effectively applied and provide a useful alternative for daily streamflow modeling and the application of wavelet analysis contributed to the increasing accuracy of streamflow modeling. Moreover, 14 wavelet functions from various families were tested to analyze the impact of various mother wavelets on the XAJ-WRF model.

Author(s):  
Berina Kilicarslan ◽  
ismail yucel ◽  
Heves Pilatin ◽  
Eren Duzenli ◽  
Mustafa Yılmaz

In this study, the impact of spatio-temporal accuracy of four different sea surface temperature (SST) datasets on the accuracy of the Weather Research and Forecasting (WRF)-Hydro system to simulate hydrological response during two catastrophic flood events over Eastern Black Sea (EBS) and Mediterranean (MED) regions of Turkey is investigated. Three time-varying and high spatial resolution external SST products (GHRSST, Medspiration, and NCEP-SST) and one coarse-resolution and invariable SST product (ERA5- and GFS-SST for EBS and MED regions, respectively) already embedded in the initial and boundary condition dataset of WRF model are used in deriving near-surface weather variables through WRF. After the proper event-based calibration performed to the WRF-Hydro using hourly and daily streamflow data of small catchments in both regions, uncoupled model simulations for independent SST events are conducted to assess the impact of SST-triggered precipitation on simulated extreme runoff. Some localized and temporal differences in the occurrence of the flood events with respect to observations depending on the SST representation are noticeable. SST products represented with higher temporal and spatial correlation revealed significant improvement in flood hydrographs for both regions. The higher spatial and temporal correlations of GHRSST dataset show RMSE reduction up to 20% and increase in correlation from 0.3 to 0.8 with respect to the invariable SST (ERA5) in simulated runoffs over the EBS region. The error reduction with GHRSST reached 35% after the calibration of hydrological model parameters compared to not calibrated model. The use of both GHRSST and Medspiration SST data characterized with high spatiotemporal correlation resulted in runoff simulations exactly matching the observed runoff peak of 300 m3/s by reducing the overestimation seen in not calibrated runs over the MED region.


Author(s):  
Jaspreet Kaur

Manpower training and development is an important aspect of human resources management which must be embarked upon either proactively or reactively to meet any change brought about in the course of time. Training is a continuous and perennial activity. It provides employees with the knowledge and skills to perform more effectively. The study examines the opinions of trainees regarding the impact of training and development programmes on the productivity of employees in the selected banks. To evaluate the impact of training and development programmes on productivity of banking sector, multiple regression analysis was employed in both log as well as log-linear forms. Also the impact of three sets of training i.e. objectives, methods and basics on level of satisfaction of respondents with the training was also examined through employing the regression analysis in the similar manner.


2015 ◽  
Vol 54 (8) ◽  
pp. 1809-1825 ◽  
Author(s):  
Yaodeng Chen ◽  
Hongli Wang ◽  
Jinzhong Min ◽  
Xiang-Yu Huang ◽  
Patrick Minnis ◽  
...  

AbstractAnalysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.


Author(s):  
Luke J. LeBel ◽  
Brian H. Tang ◽  
Ross A. Lazear

AbstractThe complex terrain at the intersection of the Mohawk and Hudson valleys of New York has an impact on the development and evolution of severe convection in the region. Specifically, previous research has concluded that terrain-channeled flow in the Mohawk and Hudson valleys likely contributes to increased low-level wind shear and instability in the valleys during severe weather events such as the historic 31 May 1998 event that produced a strong (F3) tornado in Mechanicville, New York.The goal of this study is to further examine the impact of terrain channeling on severe convection by analyzing a high-resolution WRF model simulation of the 31 May 1998 event. Results from the simulation suggest that terrain-channeled flow resulted in the localized formation of an enhanced low-level moisture gradient, resembling a dryline, at the intersection of the Mohawk and Hudson valleys. East of this boundary, the environment was characterized by stronger low-level wind shear and greater low-level moisture and instability, increasing tornadogenesis potential. A simulated supercell intensified after crossing the boundary, as the larger instability and streamwise vorticity of the low-level inflow was ingested into the supercell updraft. These results suggest that terrain can have a key role in producing mesoscale inhomogeneities that impact the evolution of severe convection. Recognition of these terrain-induced boundaries may help in anticipating where the risk of severe weather may be locally enhanced.


Author(s):  
He Sun ◽  
Fengge Su ◽  
Zhihua He ◽  
Tinghai Ou ◽  
Deliang Chen ◽  
...  

AbstractIn this study, two sets of precipitation estimates based on the regional Weather Research and Forecasting model (WRF) –the high Asia refined analysis (HAR) and outputs with a 9 km resolution from WRF (WRF-9km) are evaluated at both basin and point scales, and their potential hydrological utilities are investigated by driving the Variable Infiltration Capacity (VIC) large-scale land surface hydrological model in seven Third Pole (TP) basins. The regional climate model (RCM) tends to overestimate the gauge-based estimates by 20–95% in annual means among the selected basins. Relative to the gauge observations, the RCM precipitation estimates can accurately detect daily precipitation events of varying intensities (with absolute bias < 3 mm). The WRF-9km exhibits a high potential for hydrological application in the monsoon-dominated basins in the southeastern TP (with NSE of 0.7–0.9 and bias of -11% to 3%), while the HAR performs well in the upper Indus (UI) and upper Brahmaputra (UB) basins (with NSE of 0.6 and bias of -15% to -9%). Both the RCM precipitation estimates can accurately capture the magnitudes of low and moderate daily streamflow, but show limited capabilities in flood prediction in most of the TP basins. This study provides a comprehensive evaluation of the strength and limitation of RCMs precipitation in hydrological modeling in the TP with complex terrains and sparse gauge observations.


2017 ◽  
Vol 145 (6) ◽  
pp. 2385-2404 ◽  
Author(s):  
Alice K. DuVivier ◽  
John J. Cassano ◽  
Steven Greco ◽  
G. David Emmitt

Abstract Mesoscale barrier jets in the Denmark Strait are common in winter months and have the capability to influence open ocean convection. This paper presents the first detailed observational study of a summertime (21 May 2015) barrier wind event in the Denmark Strait using dropsondes and observations from an airborne Doppler wind lidar (DWL). The DWL profiles agree well with dropsonde observations and show a vertically narrow (~250–400 m) barrier jet of 23–28 m s−1 near the Greenland coast that broadens (~300–1000 m) and strengthens farther off coast. In addition, otherwise identical regional high-resolution Weather Research and Forecasting (WRF) Model simulations of the event are analyzed at four horizontal grid spacings (5, 10, 25, and 50 km), two vertical resolutions (40 and 60 levels), and two planetary boundary layer (PBL) parameterizations [Mellor–Yamada–Nakanishi–Niino, version 2.5 (MYNN2.5) and University of Washington (UW)] to determine what model configurations best simulate the observed jet structure. Comparison of the WRF simulations with wind observations from satellites, dropsondes, and the airborne DWL scans indicate that the combination of both high horizontal resolution (5 km) and vertical resolution (60 levels) best captures observed barrier jet structure and speeds as well as the observed cloud field, including some convective clouds. Both WRF PBL schemes produced reasonable barrier jets with the UW scheme slightly outperforming the MYNN2.5 scheme. However, further investigation at high horizontal and vertical resolution is needed to determine the impact of the WRF PBL scheme on surface energy budget terms, particularly in the high-latitude maritime environment around Greenland.


Sign in / Sign up

Export Citation Format

Share Document