Frequency of Extremes and its Relation to Climate Fluctuations

1993 ◽  
Vol 24 (1) ◽  
pp. 1-12 ◽  
Author(s):  
I. Krasovskaia ◽  
L. Gottschalk

Possible consequences of climate change concern both changes in long-term mean values of runoff and changes in frequency and magnitude of extreme runoff events. The physical safety of dams and protection against floods are not sensitive to the moderate changes in mean values but to the frequency and magnitude of extremes. This study presents the results of the analyses of the changes in the behavior of the extreme runoff values due to observed changes of temperature and precipitation. Statistical parameters of the magnitude of floods as well as their intensity have been studied. An attempt is also made to establish regional probability distribution curves for the frequencies of the extreme floods for different patterns of changes in the climatic variables considered.

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Hüseyin Toros ◽  
Mohsen Abbasnia ◽  
Mustafa Sagdic ◽  
Mete Tayanç

Istanbul, as one of the four anchor megacities of Europe, has shown a rise of 0.94°C in average annual temperature over the long period of 1912–2016 under impacts of anthropogenic climate change. A notable increase in temperatures has started after the 1940s, which is in parallel with the beginning of industrialization era in Istanbul. This warming is associated with an extensive population growth and accompanied the decrease in vegetation cover. Increasing in minimum series of temperature is more evident than maximum values and the rising rate of temperature values has been more pronounced during recent decades. The first significant upward trend in precipitation series has periodically started in 1920s, while there has been a stable trend from 2001 till today. The daily average of rainfall amount increased with a mean value of 58 mm during the total study period. Rising rate of daily maximum precipitation has been more evident in the last 3 decades, which is shown by the increased frequency of heavy rainfall. In this regard, both of the temperature and precipitation series had higher mean values (13.9°C and 878 mm) for the final period (1965–2016) compared to the mean values (13.6°C and 799 mm) belonging to the first period (1912–1964).


2021 ◽  
Author(s):  
Chloé M. Marcilly ◽  
Trond H. Torsvik ◽  
Mathew Domeier ◽  
Dana L. Royer

<p>CO<sub>2</sub> is the most important greenhouse gas in the Earth’s atmosphere and has fluctuated considerably over geological time. However, proxies for past CO<sub>2 </sub>concentrations have large uncertainties and are mostly limited to Devonian and younger times. Consequently, CO<sub>2</sub> modelling plays a key role in reconstructing past climate fluctuations. Facing the limitations with the current CO<sub>2</sub> models, we aim to refine two important forcings for CO<sub>2</sub> levels over the Phanerozoic, namely carbon degassing and silicate weathering.</p><p>Silicate weathering and carbonate deposition is widely recognized as a primary sink of carbon on geological timescales and is largely influenced by changes in climate, which in turn is linked to changes in paleogeography. The role of paleogeography on silicate weathering fluxes has been the focus of several studies in recent years. Their aims were mostly to constrain climatic parameters such as temperature and precipitation affecting weathering rates through time. However, constraining the availability of exposed land is crucial in assessing the theoretical amount of weathering on geological time scales. Associated with changes in climatic zones, the fluctuation of sea-level is critical for defining the amount of land exposed to weathering. The current reconstructions used in<sub></sub>models tend to overestimate the amount of exposed land to weathering at periods with high sea levels. Through the construction of continental flooding maps, we constrain the effective land area undergoing silicate weathering for the past 520 million years. Our maps not only reflect sea-level fluctuations but also contain climate-sensitive indicators such as coal (since the Early Devonian) and evaporites to evaluate climate gradients and potential weatherablity through time. This is particularly important after the Pangea supercontinent formed but also for some time after its break-up.</p><p>Whilst silicate weathering is an important CO<sub>2</sub> sink, volcanic carbon degassing is a major source but one of the least constrained climate forcing parameters. There is no clear consensus on the history of degassing through geological time as there are no direct proxies for reconstructing carbon degassing, but various proxy methods have been postulated. We propose new estimates of plate tectonic degassing for the Phanerozoic using both subduction flux from full-plate models and zircon age distribution from arcs (arc-activity) as proxies.</p><p>The effect of revised modelling parameters for weathering and degassing was tested in the well-known long-term models GEOCARBSULF and COPSE. They revealed the high influence of degassing on CO<sub>2</sub> levels using those models, highlighting the need for enhanced research in this direction. The use of arc-activity as a proxy for carbon degassing leads to interesting responses in the Mesozoic and brings model estimates closer to CO<sub>2 </sub> proxy values. However, from simulations using simultaneously the revised input parameters (i.e weathering and degassing) large model-proxy discrepancies remain and notably for the Triassic and Jurassic.</p><p> </p>


Author(s):  
Jiban Mani Poudel

In the 21st century, global climate change has become a public and political discourse. However, there is still a wide gap between global and local perspectives. The global perspective focuses on climate fluctuations that affect the larger region; and their analysis is based on long-term records over centuries and millennium. By comparison, local peoples’ perspectives vary locally, and local analyses are limited to a few days, years, decades and generations only. This paper examines how farmers in Kirtipur of Kathmandu Valley, Nepal, understand climate variability in their surroundings. The researcher has used a cognized model to understand farmers’ perception on weather fluctuations and climate change. The researcher has documented several eyewitness accounts of farmers about weather fluctuations which they have been observing in a lifetime. The researcher has also used rainfall data from 1970-2009 to test the accuracy of perceptions. Unlike meteorological analyses, farmers recall and their understanding of climatic variability by weather-crop interaction, and events associating with climatic fluctuations and perceptions are shaped by both physical visibility and cultural frame or belief system.DOI: http://dx.doi.org/10.3126/hn.v11i1.7200 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.30-34


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


2015 ◽  
Vol 105 (5) ◽  
pp. 232-236 ◽  
Author(s):  
Raymond Guiteras ◽  
Amir Jina ◽  
A. Mushfiq Mobarak

A burgeoning “Climate-Economy” literature has uncovered many effects of changes in temperature and precipitation on economic activity, but has made considerably less progress in modeling the effects of other associated phenomena, like natural disasters. We develop new, objective data on floods, focusing on Bangladesh. We show that rainfall and self-reported exposure are weak proxies for true flood exposure. These data allow us to study adaptation, giving accurate measures of both long-term averages and short term variation in exposure. This is important in studying climate change impacts, as people will not only experience new exposures, but also experience them differently.


2020 ◽  
Vol 12 (8) ◽  
pp. 1332 ◽  
Author(s):  
Linghui Guo ◽  
Liyuan Zuo ◽  
Jiangbo Gao ◽  
Yuan Jiang ◽  
Yongling Zhang ◽  
...  

An understanding of the response of interannual vegetation variations to climate change is critical for the future projection of ecosystem processes and developing effective coping strategies. In this study, the spatial pattern of interannual variability in the growing season normalized difference vegetation index (NDVI) for different biomes and its relationships with climate variables were investigated in Inner Mongolia during 1982–2015 by jointly using linear regression, geographical detector, and geographically weighted regression methodologies. The result showed that the greatest variability of the growing season NDVI occurred in typical steppe and desert steppe, with forest and desert most stable. The interannual variability of NDVI differed monthly among biomes, showing a time gradient of the largest variation from northeast to southwest. NDVI interannual variability was significantly related to that of the corresponding temperature and precipitation for each biome, characterized by an obvious spatial heterogeneity and time lag effect marked in the later period of the growing season. Additionally, the large slope of NDVI variation to temperature for desert implied that desert tended to amplify temperature variations, whereas other biomes displayed a capacity to buffer climate fluctuations. These findings highlight the relationships between vegetation variability and climate variability, which could be used to support the adaptive management of vegetation resources in the context of climate change.


2018 ◽  
Vol 47 (2) ◽  
pp. 336-356 ◽  
Author(s):  
Gregory L. Torell ◽  
Katherine D. Lee

Climate change will increase variability in temperature and precipitation on rangelands, impacting ecosystem services including livestock grazing. Facing uncertainty about future climate, managers must know if current practices will maintain rangeland sustainability. Herein, the future density of an invasive species, broom snakeweed, is estimated using a long-term ecological dataset and climate projections. We find that livestock stocking rates determined using a current method result in lower forage production, allowable stocking rate, and grazing value than an economically efficient stocking rate. Results indicate that using ecology and adaptive methods in management are critical to the sustainability of rangelands.


2021 ◽  
Vol 13 (18) ◽  
pp. 3618
Author(s):  
Stefan Dech ◽  
Stefanie Holzwarth ◽  
Sarah Asam ◽  
Thorsten Andresen ◽  
Martin Bachmann ◽  
...  

Earth Observation satellite data allows for the monitoring of the surface of our planet at predefined intervals covering large areas. However, there is only one medium resolution sensor family in orbit that enables an observation time span of 40 and more years at a daily repeat interval. This is the AVHRR sensor family. If we want to investigate the long-term impacts of climate change on our environment, we can only do so based on data that remains available for several decades. If we then want to investigate processes with respect to climate change, we need very high temporal resolution enabling the generation of long-term time series and the derivation of related statistical parameters such as mean, variability, anomalies, and trends. The challenges to generating a well calibrated and harmonized 40-year-long time series based on AVHRR sensor data flown on 14 different platforms are enormous. However, only extremely thorough pre-processing and harmonization ensures that trends found in the data are real trends and not sensor-related (or other) artefacts. The generation of European-wide time series as a basis for the derivation of a multitude of parameters is therefore an extremely challenging task, the details of which are presented in this paper.


1990 ◽  
Vol 14 ◽  
pp. 332
Author(s):  
Melinda M. Brugman

One possible cause of glacier terminus variation is climate change. The problem with proving or disproving this hypothesis is that the precise relationship between climate change and glacier flow response is still incompletely understood. In this paper, I examine the relationship between recent glacier terminus fluctuations and climate variations documented since the middle 1800s in the Pacific northwest region of the United States. Six glaciers located in Washington and one in Oregon are compared in terms of terminus position record, local climate data (temperature, precipitation, snowfall and runoff records) and also in terms of what is known about the flow dynamics of each glacier. A simple model is presented to simulate the observed response behavior of each glacier. The variables modeled here include surface and bed slope, ice thickness, glacier length, sliding and deformation mechanics, seasonality of glacier flow velocity, traveling wave dynamics, snow accumulation and ablation patterns, runoff, regional temperature and precipitation. Mainly, information obtained at Blue, South Cascade and Nisqually glaciers are compared to results obtained by the author at Shoestring Glacier on Mount St. Helens. Others studied include Forsythe, Elliot, Coleman glaciers. The effects of local volcanic eruptions are separated from those attributed to climate change. Local climate records show that times of cool-wet weather alternate with warm-dry weather on a time scale of 15 to 20 years. In general, no definable long-term trend of annual average temperature and precipitation is apparent in the climate records (starting in the mid-1800s), except for a suggestion of slightly increased annual precipitation in the northern part of Washington since about 1930. The availability and reliability of different types of climate data is discussed in the paper. At Shoestring Glacier, the observed rapid response to environmental changes (both climate and volcanic) is shown to be directly related to readily-described mechanics of glacier sliding, internal deformation and englacial thrusting along discrete shear zones. For other glaciers, a combination of a rapid sliding response and a slow long-term deformation and sliding response is apparent, and related to that of the Shoestring Glacier. Where stagnant ice exists at or near a glacier terminus, the response behavior may be further complicated. The stagnant ice is often overthrust and buried by reactivated ice moving down from higher elevations. In other situations, stagnant terminus ice is accreted to the front of the reactivated portion of a glacier and shoved downhill. This behavior is seen at Shoestring and Nisqually glaciers. Traveling waves (resembling kinematic waves) are apparent at three of the glaciers studied and probably occur to some degree at all the glaciers. Understanding of the details of glacier flow dynamics and existing terminus conditions helped to formulate a simple model that I use to simulate terminus fluctuation records of all seven glaciers. Records of terminus position studies indicate that three distinct trends exist for this region. The first is a long-term trend of progressive retreat throughout historic times (meaning locally since the early 1800s). The second trend is the dramatic decrease in the rate of retreat and (perhaps temporary) minor readvance of some glaciers (Blue, Nisqually, Forsythe, Coleman, Shoestring glaciers) since 1950. The third trend is the short-term oscillation of glacier terminus positions on a cycle of 15 to 20 years that has occurred since 1950. Except for a slight hint of increased precipitation since 1950, the long-term variation in glacier terminus positions cannot be explained by local climate records. This may be attributed to the shortness of the available climate records, and the large variance of annual temperature and precipitation data. Conversely, the high frequency glacier terminus variations (on the order of 10 to 20 years) are well correlated with local temperature and precipitation fluctuations. For example, Nisqually and Shoestring glaciers advanced when the climate pattern became cool-wet and retreated when the climate changed to warm-dry. Very short lag times are implied by the data for several glaciers, and these are discussed in the paper. Results indicate that certain local glaciers are very sensitive to short-term climate variations on the order of one to ten years. Large glaciers and glaciers flowing slowly down shallow slopes respond more sluggishly to short-term climate changes, as might be expected. Glaciers with the greatest degree of seasonality in their flow behavior, such as Nisqually and Shoestring glaciers, responded most rapidly. Using this information derived from recent glacier and climate records we may be able to better predict future trends of snow accumulation patterns and climate change.


Sign in / Sign up

Export Citation Format

Share Document