scholarly journals Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States

2015 ◽  
Vol 47 (2) ◽  
pp. 483-500 ◽  
Author(s):  
Darren L. Ficklin ◽  
Sally L. Letsinger ◽  
Iris T. Stewart ◽  
Edwin P. Maurer

Most recent climate change impact studies are using Coupled Model Intercomparison Project Phase 5 (CMIP5) projections to replace older generation CMIP3 projections. Here we evaluate whether differences between projections based on comparable high emission pathways of a seven-member general circulation model CMIP3 versus CMIP5 ensemble change our understanding of the expected hydrologic impacts. This work focuses on the important snowmelt-dominated mountain runoff-generating regions of the western United States (WUS; Upper Colorado River Basin (UCRB), Columbia River Basin (CRB), and Sierra Nevada (SN) Basins). Significant declines in snowmelt, and shifts in streamflow timing owing to warmer, wetter CMIP5 projections match or exceed those based on CMIP3 throughout the WUS. CMIP3- and CMIP5-based projections, while generally in agreement about hydroclimatic changes, differ in some important aspects for key regions. The most important is the UCRB, where CMIP5-based projections suggest increases in future streamflows. Comparable hydrologic projections result from similar underlying climate signals in CMIP3 and CMIP5 output for the CRB and SN, suggesting that previous work completed in these basins based on CMIP3 projections is likely still useful. However, UCRB hydrologic projections based on CMIP5 output suggest that a re-evaluation of future impacts on water resources is warranted.

2012 ◽  
Vol 16 (9) ◽  
pp. 1-26 ◽  
Author(s):  
Kingtse C. Mo ◽  
Lindsey N. Long ◽  
Jae-Kyung E. Schemm

Abstract Atmosphere–land–ocean coupled model simulations are examined to diagnose the ability of models to simulate drought and persistent wet spells over the United States. A total of seven models are selected for this study. They are three versions of the NCEP Climate Forecast System (CFS) coupled general circulation model (CGCM) with a T382, T126, and T62 horizontal resolution; GFDL Climate Model version 2.0 (CM2.0); GFDL CM2.1; Max Planck Institute (MPI) ECHAM5; and third climate configuration of the Met Office Unified Model (HadCM3) simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) experiments. Over the United States, drought and persistent wet spells are more likely to occur over the western interior region, while extreme events are less likely to persist over the eastern United States and the West Coast. For meteorological drought, which is defined by precipitation (P) deficit, the east–west contrast is well simulated by the CFS T382 and the T126 models. The HadCM3 captures the pattern but not the magnitudes of the frequency of occurrence of persistent extreme events. For agricultural drought, which is defined by soil moisture (SM) deficit, the CFS T382, CFS T126, MPI ECHAM5, and HadCM3 models capture the east–west contrast. The models that capture the west–east contrast also have a realistic P climatology and seasonal cycle. ENSO is the dominant mode that modulates P over the United States. A model needs to have the ENSO mode and capture the mean P responses to ENSO in order to simulate realistic drought. To simulate realistic agricultural drought, the model needs to capture the persistence of SM anomalies over the western region.


2018 ◽  
Vol 31 (24) ◽  
pp. 9921-9940 ◽  
Author(s):  
N. Goldenson ◽  
L. R. Leung ◽  
C. M. Bitz ◽  
E. Blanchard-Wrigglesworth

In the coastal mountains of western North America, most extreme precipitation is associated with atmospheric rivers (ARs), narrow bands of moisture originating in the tropics. Here we quantify how interannual variability in atmospheric rivers influences snowpack in the western United States in observations and a model. We simulate the historical climate with the Model for Prediction Across Scales (MPAS) with physics from the Community Atmosphere Model, version 5 [CAM5 (MPAS-CAM5)], using prescribed sea surface temperatures. In the global variable-resolution domain, regional refinement (at ~30 km) is applied to our region of interest and upwind over the northeast Pacific. To better characterize internal variability, we conduct simulations with three ensemble members over 30 years of the historical period. In the Cascade Range, with some exceptions, winters with more atmospheric river days are associated with less snowpack. In California’s Sierra Nevada, winters with more ARs are associated with greater snowpack. The slope of the linear regression of observed snow water equivalent (SWE) on reanalysis-based AR count has the same sign as that arrived at using the model, but is statistically significant in observations only for California. In spring, internal variance plays an important role in determining whether atmospheric river days appear to be associated with greater or less snowpack. The cumulative (winter through spring) number of atmospheric river days, on the other hand, has a relationship with spring snowpack, which is consistent across ensemble members. Thus, the impact of atmospheric rivers on winter snowpack has a greater influence on spring snowpack than spring atmospheric rivers in the model for both regions and in California consistently in observations.


1991 ◽  
Vol 69 (11) ◽  
pp. 2434-2441 ◽  
Author(s):  
D. R. Vogler ◽  
B. B. Kinloch Jr. ◽  
F. W. Cobb Jr. ◽  
T. L. Popenuck

We conducted a population genetic study of the western gall rust fungus (Peridermium harknessii) using isozymes as genetic markers. Electrophoresis of 341 single-gall aeciospore isolates collected from several pine species revealed that western gall rust is comprised of two distinct zymodemes (multilocus electrophoretic types) in the western United States. Within zymodemes, all 15 loci studied were monomorphic (0.95 criterion), although variants were found at low frequencies (≤ 0.03) at 3 loci. Zymodeme I was characterized by single bands, indicating homozygosity at all loci; it consisted of isolates from all pine species and environments studied, including the Pacific Coast and Cascade Ranges and the Sierra Nevada and Rocky Mountains. Zymodeme II, which was absent from coastal forests, was characterized by double or triple bands at 6 of 15 loci. The additional bands were interpreted as products of alternative alleles in heterozygous condition; isozyme phenotypes at the other nine loci were identical to those of zymodeme I. Presumed heterozygotes were fixed within zymodeme II, and homozygotes of alleles unique to this zymodeme were not found. Generally, all isolates sampled from a forest stand were in the same zymodeme, and when isolates from both zymodemes were found in the same location, recombinant genotypes between zymodemes were not observed. Such extreme disequilibrium is inconsistent with sexual reproduction, indicating that P. harknessii is asexual. Key words: western gall rust, Pinus spp., genetic variation.


2017 ◽  
Vol 24 (4) ◽  
pp. 681-694 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiong Deng ◽  
Shaoqing Zhang ◽  
Zhengyu Liu ◽  
Chang Liu ◽  
...  

Abstract. Climate signals are the results of interactions of multiple timescale media such as the atmosphere and ocean in the coupled earth system. Coupled data assimilation (CDA) pursues balanced and coherent climate analysis and prediction initialization by incorporating observations from multiple media into a coupled model. In practice, an observational time window (OTW) is usually used to collect measured data for an assimilation cycle to increase observational samples that are sequentially assimilated with their original error scales. Given different timescales of characteristic variability in different media, what are the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA? With a simple coupled model that simulates typical scale interactions in the climate system and twin CDA experiments, we address this issue here. Results show that in each coupled medium, an optimal OTW can provide maximal observational information that best fits the characteristic variability of the medium during the data blending process. Maintaining correct scale interactions, the resulting CDA improves the analysis of climate signals greatly. These simple model results provide a guideline for when the real observations are assimilated into a coupled general circulation model for improving climate analysis and prediction initialization by accurately recovering important characteristic variability such as sub-diurnal in the atmosphere and diurnal in the ocean.


2020 ◽  
Author(s):  
Saurav Pradhananga ◽  
Arthur Lutz ◽  
Archana Shrestha ◽  
Indira Kadel ◽  
Bikash Nepal ◽  
...  

A supplement to the Climate Change Scenarios for Nepal report published by the Ministry of Forests and Environment for the National Adaptation Plan (NAP) Process, this manual provides detailed information about the processes through which the assessment highlighted in the report can be carried out. They include – selection of the general circulation/climate models (GCMs), downscaling of the GCM dataset, assessment of changes in precipitation and temperature, and assessment of change in climate extremes. The manual downscales climate datasets for the Koshi River basin, the Kabul River basin, and the Kailash Sacred Landscape to analyse future scenarios in these basins and the landscape.


2017 ◽  
Vol 8 (1) ◽  
pp. 301-312 ◽  
Author(s):  
Julie L. Day ◽  
Jennifer L. Jacobs ◽  
Josh Rasmussen

Abstract Decades of persistent natural and anthropogenic threats coupled with competing water needs have compromised numerous species of freshwater fishes, many of which are now artificially propagated in hatcheries. Low survival upon release is common, particularly in systems with substantial nonnative predator populations. Extensive sampling for Shortnose (Chasmistes brevirostris) and Lost River Suckers (Deltistes luxatus) in the Klamath River Basin on the California–Oregon border have failed to detect any new adult recruitment for at least two decades, prompting an investigation into artificial propagation as an extinction prevention measure. A comprehensive assessment of strategies and successes associated with propagation for conservation restocking has not been performed for any Catostomid. Here, we review available literature for all western lake sucker species to inform propagation and recovery efforts for Klamath suckers and summarize the relevance of these considerations to other endangered fishes.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1793 ◽  
Author(s):  
Najeebullah Khan ◽  
Shamsuddin Shahid ◽  
Kamal Ahmed ◽  
Tarmizi Ismail ◽  
Nadeem Nawaz ◽  
...  

The performance of general circulation models (GCMs) in a region are generally assessed according to their capability to simulate historical temperature and precipitation of the region. The performance of 31 GCMs of the Coupled Model Intercomparison Project Phase 5 (CMIP5) is evaluated in this study to identify a suitable ensemble for daily maximum, minimum temperature and precipitation for Pakistan using multiple sets of gridded data, namely: Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE), Berkeley Earth Surface Temperature (BEST), Princeton Global Meteorological Forcing (PGF) and Climate Prediction Centre (CPC) data. An entropy-based robust feature selection approach known as symmetrical uncertainty (SU) is used for the ranking of GCM. It is known from the results of this study that the spatial distribution of best-ranked GCMs varies for different sets of gridded data. The performance of GCMs is also found to vary for both temperatures and precipitation. The Commonwealth Scientific and Industrial Research Organization, Australia (CSIRO)-Mk3-6-0 and Max Planck Institute (MPI)-ESM-LR perform well for temperature while EC-Earth and MIROC5 perform well for precipitation. A trade-off is formulated to select the common GCMs for different climatic variables and gridded data sets, which identify six GCMs, namely: ACCESS1-3, CESM1-BGC, CMCC-CM, HadGEM2-CC, HadGEM2-ES and MIROC5 for the reliable projection of temperature and precipitation of Pakistan.


2012 ◽  
Vol 25 (20) ◽  
pp. 7083-7099 ◽  
Author(s):  
S. C. Hardiman ◽  
N. Butchart ◽  
T. J. Hinton ◽  
S. M. Osprey ◽  
L. J. Gray

Abstract The importance of using a general circulation model that includes a well-resolved stratosphere for climate simulations, and particularly the influence this has on surface climate, is investigated. High top model simulations are run with the Met Office Unified Model for the Coupled Model Intercomparison Project Phase 5 (CMIP5). These simulations are compared to equivalent simulations run using a low top model differing only in vertical extent and vertical resolution above 15 km. The period 1960–2002 is analyzed and compared to observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Long-term climatology, variability, and trends in surface temperature and sea ice, along with the variability of the annular mode index, are found to be insensitive to the addition of a well-resolved stratosphere. The inclusion of a well-resolved stratosphere, however, does improve the impact of atmospheric teleconnections on surface climate, in particular the response to El Niño–Southern Oscillation, the quasi-biennial oscillation, and midwinter stratospheric sudden warmings (i.e., zonal mean wind reversals in the middle stratosphere). Thus, including a well-represented stratosphere could improve climate simulation on intraseasonal to interannual time scales.


Sign in / Sign up

Export Citation Format

Share Document