scholarly journals A global hydrology research agenda fit for the 2030s

2019 ◽  
Vol 50 (6) ◽  
pp. 1464-1480 ◽  
Author(s):  
Robert L. Wilby

Abstract Global assessments show profound impacts of human activities on freshwater systems that, without action, are expected to reach crisis point in the 2030s. By then, the capacity of natural systems to meet rising demands for water, food, and energy could be hampered by emerging signals of anthropogenic climate change. The hydrological community has always been solution-orientated, but our generation faces perhaps the greatest array of water challenges in human history. Ambitious programmes of research are needed to fill critical data, knowledge, and skills gaps. Priorities include filling data sparse places, predicting peak water, understanding the physical drivers of mega droughts, evaluating hyper-resolution models, managing compound hazards, and adjusting water infrastructure designs to climate change. Despite the opportunities presented by big data, we must not lose sight of the deep uncertainties affecting both our raw input data and hydrological models, nor neglect the human dimensions of water system change. Community-scale projects and international research partnerships are needed to connect new hydrological knowledge with most vulnerable communities as well as to achieve more integrated and grounded solutions. With these elements in place, we will be better equipped to meet the global hydrological challenges of the 2030s and beyond.

Author(s):  
Stephen M. Gardiner ◽  
Simon Caney ◽  
Dale Jamieson ◽  
Henry Shue

This collection gathers a set of seminal papers from the emerging area of ethics and climate change. Topics covered include human rights, international justice, intergenerational ethics, individual responsibility, climate economics, and the ethics of geoengineering. Climate Ethics is intended to serve as a source book for general reference, and for university courses that include a focus on the human dimensions of climate change. It should be of broad interest to all those concerned with global justice, environmental science and policy, and the future of humanity.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Adelle Thomas ◽  
Emily Theokritoff ◽  
Alexandra Lesnikowski ◽  
Diana Reckien ◽  
Kripa Jagannathan ◽  
...  

AbstractConstraints and limits to adaptation are critical to understanding the extent to which human and natural systems can successfully adapt to climate change. We conduct a systematic review of 1,682 academic studies on human adaptation responses to identify patterns in constraints and limits to adaptation for different regions, sectors, hazards, adaptation response types, and actors. Using definitions of constraints and limits provided by the Intergovernmental Panel on Climate Change (IPCC), we find that most literature identifies constraints to adaptation but that there is limited literature focused on limits to adaptation. Central and South America and Small Islands generally report greater constraints and both hard and soft limits to adaptation. Technological, infrastructural, and ecosystem-based adaptation suggest more evidence of constraints and hard limits than other types of responses. Individuals and households face economic and socio-cultural constraints which also inhibit behavioral adaptation responses and may lead to limits. Finance, governance, institutional, and policy constraints are most prevalent globally. These findings provide early signposts for boundaries of human adaptation and are of high relevance for guiding proactive adaptation financing and governance from local to global scales.


2021 ◽  
Author(s):  
Laura Müller ◽  
Petra Döll

<p>Due to climate change, the water cycle is changing which requires to adapt water management in many regions. The transdisciplinary project KlimaRhön aims at assessing water-related risks and developing adaptation measures in water management in the UNESCO Biosphere Reserve Rhön in Central Germany. One of the challenges is to inform local stakeholders about hydrological hazards in in the biosphere reserve, which has an area of only 2433 km² and for which no regional hydrological simulations are available. To overcome the lack of local simulations of the impact of climate change on water resources, existing simulations by a number of global hydrological models (GHMs) were evaluated for the study area. While the coarse model resolution of 0.5°x0.5° (55 km x 55 km at the equator) is certainly problematic for the small study area, the advantage is that both the uncertainty of climate simulations and hydrological models can be taken into account to provide a best estimate of future hazards and their (large) uncertainties. This is different from most local hydrological climate change impact assessments, where only one hydrological model is used, which leads to an underestimation of future uncertainty as different hydrological models translate climatic changes differently into hydrological changes and, for example, mostly do not take into account the effect of changing atmospheric CO<sub>2</sub> on evapotranspiration and thus runoff.   </p><p>The global climate change impact simulations were performed in a consistent manner by various international modeling groups following a protocol developed by ISIMIP (ISIMIP 2b, www.isimip.org); the simulation results are freely available for download. We processed, analyzed and visualized the results of the multi-model ensemble, which consists of eight GHMs driven by the bias-adjusted output of four general circulation models. The ensemble of potential changes of total runoff and groundwater recharge were calculated for two 30-year future periods relative to a reference period, analyzing annual and seasonal means as well as interannual variability. Moreover, the two representative concentration pathways RCP 2.6 and 8.5 were chosen to inform stakeholders about two possible courses of anthropogenic emissions.</p><p>To communicate the results to local stakeholders effectively, the way to present modeling results and their uncertainty is crucial. The visualization and textual/oral presentation should not be overwhelming but comprehensive, comprehensible and engaging. It should help the stakeholder to understand the likelihood of particular hazards that can be derived from multi-model ensemble projections. In this contribution, we present the communication approach we applied during a stakeholder workshop as well as its evaluation by the stakeholders.</p>


2021 ◽  
Vol 20 (1) ◽  
pp. 138-158
Author(s):  
Umer Khayyam ◽  
Rida Bano ◽  
Shahzad Alvi

Abstract Global climate change is one of the main threats facing humanity and the impacts on natural systems as well as humans are expected to be severe. People can take action against these threats through two approaches: mitigation and adaptation. However, mitigations and adaptations are contingent on the level of motivation and awareness, as well as socio-economic and environmental conditions. This study examined personal perception and motivation to mitigate and adapt to climate change among the university students in the capital city of Pakistan. We divided the respondents into social sciences, applied sciences and natural sciences, using logistic regression analysis. The results indicated that students who perceive severity, benefits from preparation, and have more information about climate change were 1.57, 4.98 and 1.63 times more likely to take mitigation and 1.47, 1.14 and 1.17 times more likely to take adaptation measures, respectively. Students who perceived self-efficacy, obstacles to protect from the negative consequences of climate change and who belonged to affluent families were more likely to take mitigation measures and less likely to take adaptation strategies. However, mitigation and adaptation were unaffected by age, gender and study discipline.


2011 ◽  
Vol 15 (11) ◽  
pp. 3511-3527 ◽  
Author(s):  
T. Liu ◽  
P. Willems ◽  
X. L. Pan ◽  
An. M. Bao ◽  
X. Chen ◽  
...  

Abstract. The Tarim river basin in China is a huge inland arid basin, which is expected to be highly vulnerable to climatic changes, given that most water resources originate from the upper mountainous headwater regions. This paper focuses on one of these headwaters: the Kaidu river subbasin. The climate change impact on the surface and ground water resources of that basin and more specifically on the hydrological extremes were studied by using both lumped and spatially distributed hydrological models, after simulation of the IPCC SRES greenhouse gas scenarios till the 2050s. The models include processes of snow and glacier melting. The climate change signals were extracted from the grid-based results of general circulation models (GCMs) and applied on the station-based, observed historical data using a perturbation approach. For precipitation, the time series perturbation involves both a wet-day frequency perturbation and a quantile perturbation to the wet-day rainfall intensities. For temperature and potential evapotranspiration, the climate change signals only involve quantile based changes. The perturbed series were input into the hydrological models and the impacts on the surface and ground water resources studied. The range of impact results (after considering 36 GCM runs) were summarized in high, mean, and low results. It was found that due to increasing precipitation in winter, snow accumulation increases in the upper mountainous areas. Due to temperature rise, snow melting rates increase and the snow melting periods are pushed forward in time. Although the qualitive impact results are highly consistent among the different GCM runs considered, the precise quantitative impact results varied significantly depending on the GCM run and the hydrological model.


2018 ◽  
Vol 6 (1-2) ◽  
pp. 117-141 ◽  
Author(s):  
Timothy Crownshaw ◽  
Caitlin Morgan ◽  
Alison Adams ◽  
Martin Sers ◽  
Natália Britto dos Santos ◽  
...  

Maintaining steady growth remains the central goal of economic policy in most nations. However, as evidenced by the advent of the Anthropocene, the global economy has expanded to a point where limits to growth are appearing. Facing the end of growth requires a careful re-examination of plausible future conditions. We draw on a diverse literature to present an interdisciplinary exploration of post-growth conditions in the areas of climate change, ecological impacts, governance, and education, finding that such conditions may invalidate many prevalent assumptions regarding the future. The post-growth world, while subject to significant uncertainty and heterogeneity, will be characterized by profound hazards and discontinuities for both human and natural systems. Furthermore, we argue that an economic paradigm change will be predicated on an involuntary and unplanned cessation of growth. This implies a necessary strategic expansion of the heterodox economic discourse to formulate appropriate responses in view of likely post-growth realities.


2020 ◽  
Author(s):  
Lieke Anna Melsen ◽  
Björn Guse

Abstract. Hydrological models are useful tools to explore the hydrological impact of climate change. Many of these models require calibration. A frequently employed strategy is to calibrate the five parameters that were found to be most relevant as identified in a sensitivity analysis. However, parameter sensitivity varies over climate, and therefore climate change could influence parameter sensitivity. In this study we explore the change in parameter sensitivity within a plausible climate change rate, and investigate if changes in sensitivity propagate into the calibration strategy. We employed three frequently used hydrological models (SAC, VIC, and HBV), and explored parameter sensitivity changes across 605 catchments in the United States by comparing a GCM-forced historical and future period. Consistent among all models is that the sensitivity of snow parameters decreases in the future. Which parameters increase in sensitivity is less consistent among the models. In 43 % to 49 % of the catchments, dependent on the model, at least one parameter changes in the future in the top-5 most sensitive parameters. The maximum number of changes in the parameter top-5 is two, in 2–4 % of the investigated catchments. The value of the parameters that enter the top-5 cannot easily be identified based on historical data, because the model is not yet sensitive to these parameters. This requires an adapted calibration strategy for long-term projections, for which we provide several suggestions. The disagreement among the models on processes becoming relevant in future projections also calls for a strict evaluation of the adequacy of the model structure and the model parameters implemented therein.


Sign in / Sign up

Export Citation Format

Share Document