Participatory fuzzy cognitive mapping analysis to evaluate the future of water in the Seyhan Basin

2013 ◽  
Vol 4 (2) ◽  
pp. 131-145 ◽  
Author(s):  
Erol H. Cakmak ◽  
Hasan Dudu ◽  
Ozan Eruygur ◽  
Metin Ger ◽  
Sema Onurlu ◽  
...  

Stress on the water resources of Turkey is expected to increase in the near future. This paper presents the results of a case study in one of the most important water basins in Turkey, the Seyhan Basin, where the future of the basin is estimated using a fuzzy cognitive mapping technique applied at a participatory meeting with the stakeholders. Participants envisioned that water supply, water demand and water use would decline in the future in response to the increasing impact of climate change. Improvements in sustainable water management, irrigation efficiency and the use of water-saving technologies will diminish the severity of scarcity that is expected to occur due to climate change.

2021 ◽  
Author(s):  
Selina Meier ◽  
Randy Munoz ◽  
Christian Huggel

<p>Water scarcity is increasingly becoming a problem in many regions of the world. On the one hand, this can be attributed to changes in precipitation conditions due to climate change. On the other hand, this is also due to population growth and changes in consumer behaviour. In this study, an analysis is carried out for the highly glaciated Vilcanota River catchment (9808 km<sup>2</sup> – 1.2% glacier area) in the Cusco region (Peru). Possible climatic and socioeconomic scenarios up to 2050 were developed including the interests from different water sectors, i.e. agriculture, domestic and energy.</p><p>The analysis consists of the hydrological simulation at a monthly time step from September 2043 to August 2050 using a simple glacio-hydrological model. For historic conditions (1990 to 2006) a combination of gridded data (PISCO precipitation) and weather stations was used. Future scenario simulations were based on three different climate models for both RCP 2.6 and 8.5. Different glacier outlines were used to simulate changes in glacier surface through the time for both historic (from satellite data) and future (from existing literature) scenarios. Furthermore, future water demand simulations were based on the SSP1 and SSP3 scenarios.</p><p>Results from all scenarios suggest an average monthly runoff of about 130 m<sup>3</sup>/s for the Vilcanota catchment between 2043 and 2050. This represents a change of about +5% compared to the historical monthly runoff of about 123 m<sup>3</sup>/s. The reason for the increase in runoff is related to the precipitation data from the selected climate models. However, an average monthly deficit of up to 50 m<sup>3</sup>/s was estimated between April and November with a peak in September. The seasonal deficit is related to the seasonal change in precipitation, while the water demand seems to have a less important influence.</p><p>Due to the great uncertainty of the modelling and changes in the socioeconomic situation, the data should be continuously updated. In order to construct a locally sustainable water management system, the modelling needs to be further downscaled to the different subcatchments in the Vilcanota catchment. To address the projected water deficit, a new dam could partially compensate for the decreasing storage capacity of the melting glaciers. However, the construction of the dam could meet resistance from the local population if they cannot be promised and communicated multiple uses of the new dam. Sustainable water management requires the cooperation of all stakeholders and all stakeholders should be able to benefit from it so that they will support future projects.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 771
Author(s):  
Pak Shing Yeung ◽  
Jimmy Chi-Hung Fung ◽  
Chao Ren ◽  
Yong Xu ◽  
Kangning Huang ◽  
...  

Urbanization is one of the most significant contributing factors to anthropogenic climate change. However, a lack of projected city land use data has posed significant challenges to factoring urbanization into climate change modeling. Thus, the results from current models may contain considerable errors in estimating future climate scenarios. The Pearl River Delta region was selected as a case study to provide insight into how large-scale urbanization and different climate change scenarios impact the local climate. This study adopts projected land use data from freely available satellite imagery and applies dynamic simulation land use results to the Weather Research and Forecasting Model (WRF). The simulation periods cover the summer periods in 2010 and 2029–2031, the latter of which is averaged to represent the year 2030. The WRF simulation used the observed local climate conditions in 2010 to represent the current scenario and the projected local climate changes for 2030 as the future scenario. Under all three future climate change scenarios, the warming trend is prominent (around 1–2 °C increase), with a widespread reduction in wind speed in inland areas (1–2 ms−1). The vulnerability of human health to thermal stress was evaluated by adopting the wet-bulb globe temperature (WBGT). The results from the future scenarios suggest a high public health risk due to rising temperatures in the future. This study provides a methodology for a more comprehensive understanding of future urbanization and its impact on regional climate by using freely available satellite images and WRF simulation tools. The simulated temperature and WBGT results can serve local governments and stakeholders in city planning and the creation of action plans that will reduce the potential vulnerability of human health to excessive heat.


Author(s):  
Adrian Barker ◽  
Andrew Pitman ◽  
Jason P. Evans ◽  
Frank Spaninks ◽  
Luther Uthayakumaran

Abstract We examine the relative impact of population increases and climate change in affecting future water demand for Sydney, Australia. We use the Weather and Research Forecasting model, a water demand model and a stochastic weather generator to downscale four different global climate models for the present (1990–2010), near (2020–2040) and far (2060–2080) future. Projected climate change would increase median metered consumption, at 2019/2020 population levels, from around 484 GL under present climate to 484–494 GL under near future climate and 495–505 GL under far future climate. Population changes from 2014/2015 to 2024/2025 have a far larger impact, increasing median metered consumption from 457 to 508 GL under the present climate, 463 to 515 GL under near future climate and from 471 to 524 GL under far future climate. The projected changes in consumption are sensitive to the climate model used. Overall, while population growth is a far stronger driver of increasing water demand than climate change for Sydney, both act in parallel to reduce the time it would take for all storage to be exhausted. Failing to account for climate change would therefore lead to overconfidence in the reliability of Sydney's water supply.


2019 ◽  
Vol 20 (2) ◽  
pp. 679-687 ◽  
Author(s):  
Angelos Alamanos ◽  
Stamatis Sfyris ◽  
Chrysostomos Fafoutis ◽  
Nikitas Mylopoulos

Abstract The relationship between water abstraction and water availability has turned into a major stress factor in the urban exploitation of water resources. The situation is expected to be sharpened in the future due to the intensity of extreme meteorological phenomena, and socio-economic changes affecting water demand. In the city of Volos, Greece, the number of water counters has been tripled during the last four decades. This study attempts to simulate the city's network, supply system and water demand through a forecasting model. The forecast was examined under several situations, based on climate change and socio-economic observations of the city, using meteorological, water pricing, users' income, level of education, family members, floor and residence size variables. The most interesting outputs are: (a) the impact of each variable in the water consumption and (b) water balance under four management scenarios, indicating the future water management conditions of the broader area, including demand and supply management. The results proved that rational water management can lead to remarkable water conservation. The simulation of real scenarios and future situations in the city's water demand and balance, is the innovative element of the study, making it capable of supporting the local water utility.


2021 ◽  
Vol 19 (4) ◽  
pp. 266-281
Author(s):  
Allan Sriratana Tabucanon ◽  
◽  
Areeya Rittima ◽  
Detchasit Raveephinit ◽  
Yutthana Phankamolsil ◽  
...  

Bhumibol Dam is the largest dam in the central region of Thailand and it serves as an important water resource. The dam’s operation relies on reservoir operating rules that were developed on the basis of the relationships among rainfall-inflow, water balance, and downstream water demand. However, due to climate change, changing rainfall variability is expected to render the reliability of the rule curves insecure. Therefore, this study investigated the impact of climate change on the reliability of the current reservoir operation rules of Bhumibol Dam. The future scenarios from 2000 to 2099 are based on EC-EARTH under RCP4.5 and RCP8.5 scenarios downscaled by RegCM4. MIKE11 HD was developed for the inflow simulation. The model generates the inflow well (R2=0.70). Generally, the trend of increasing inflow amounts is expected to continue in the dry seasons from 2000-2099, while large fluctuations of inflow are expected to be found in the wet seasons, reflecting high uncertainties. In the case of standard deviations, a larger deviation is predicted under the RCP8.5 scenario. For the reservoir’s operation in a climate change study, standard operating procedures were applied using historical release records to estimate daily reservoir release needed to serve downstream water demand in the future. It can be concluded that there is high risk of current reservoir operating rules towards the operation reliability under RCP4.5 (80% reliability), but the risk is lower under RCP8.5 (87% reliability) due to increased inflow amounts. The unmanageability occurs in the wet season, cautioning the need to redesign the rules.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1657
Author(s):  
Chul-Hee Lim

Climate change has inherent multidisciplinary characteristics, and predicting the future of a single field of work has a limit. Therefore, this study proposes a water-centric nexus approach for the agriculture and forest sectors for improving the response to climate change in the Korean Peninsula. Two spatial models, i.e., Environmental Policy Integrated Climate and Integrated Valuation of Ecosystem Services and Tradeoffs, were used to assess the extent of changes in agricultural water demand, forest water supply, and their balance at the watershed level in the current and future climatic conditions. Climate changed has increased the agricultural water demand and forest water supply significantly in all future scenarios and periods. Comparing the results with RCP8.5 2070s and the baseline, the agricultural water demand and forest water supply increased by 35% and 28%, respectively. Water balance assessment at the main watershed level in the Korean Peninsula revealed that although most scenarios of the future water supply increases offset the demand growth, a risk to water balance exists in case of a low forest ratio or smaller watershed. For instance, the western plains, which are the granary regions of South and North Korea, indicate a higher risk than other areas. These results show that the land-use balance can be an essential factor in a water-centric adaptation to climate change. Ultimately, the water-centric nexus approach can make synergies by overcoming increasing water demands attributable to climate change.


2018 ◽  
Author(s):  
René R. Wijngaard ◽  
Hester Biemans ◽  
Arthur F. Lutz ◽  
Arun B. Shrestha ◽  
Philippus Wester ◽  
...  

Abstract. The Indus, Ganges, and Brahmaputra (IGB) river basins provide about 900 million people with water resources used for agricultural, domestic, and industrial purposes. These river basins are marked as climate change hotspot, where climate change is expected to affect monsoon dynamics and the amount of meltwater from snow and ice, and thus the amount of water available. Simultaneously, rapid and continuous population growth, and strong economic development will likely result in a rapid increase in water demand. Since quantification of these future trends is missing, it is rather uncertain how the future South Asian water gap will develop. To this end, we assess the combined impacts of climate change and socio-economic development on future blue water scarcity for the IGB until the end of the 21st century. We apply a coupled modelling approach consisting of the distributed cryospheric-hydrological model SPHY, which simulates current and future upstream water supply, and the hydrology and crop production model LPJmL, which simulates current and future downstream water supply and demand. We force the models with an ensemble of eight representative downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios, and a set of land use and socio-economic scenarios that are consistent with the Shared Socio-economic Pathway (SSP) marker scenarios 1 and 3. The simulation outputs are used to analyse changes in water availability, supply, demand, and scarcity. The outcomes show an increase in surface water availability towards the end of the 21st century, which can mainly be attributed to increases in monsoon precipitation. However, despite the increase surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap during the 21st century. This indicates that socio-economic development is the key driver in the evolution of the future South Asian water gap.


Sign in / Sign up

Export Citation Format

Share Document