Urban water demand assessment for sustainable water resources management, under climate change and socioeconomic changes

2019 ◽  
Vol 20 (2) ◽  
pp. 679-687 ◽  
Author(s):  
Angelos Alamanos ◽  
Stamatis Sfyris ◽  
Chrysostomos Fafoutis ◽  
Nikitas Mylopoulos

Abstract The relationship between water abstraction and water availability has turned into a major stress factor in the urban exploitation of water resources. The situation is expected to be sharpened in the future due to the intensity of extreme meteorological phenomena, and socio-economic changes affecting water demand. In the city of Volos, Greece, the number of water counters has been tripled during the last four decades. This study attempts to simulate the city's network, supply system and water demand through a forecasting model. The forecast was examined under several situations, based on climate change and socio-economic observations of the city, using meteorological, water pricing, users' income, level of education, family members, floor and residence size variables. The most interesting outputs are: (a) the impact of each variable in the water consumption and (b) water balance under four management scenarios, indicating the future water management conditions of the broader area, including demand and supply management. The results proved that rational water management can lead to remarkable water conservation. The simulation of real scenarios and future situations in the city's water demand and balance, is the innovative element of the study, making it capable of supporting the local water utility.

2020 ◽  
Author(s):  
Cristina Pesado-Pons ◽  
Oriol Travesset-Baro ◽  
Javier Zabalza ◽  
Juan Ignacio López-Moreno ◽  
Marc Pons

<p><span>Water resources have a fundamental value for both ecosystems and society. However, changes in climate, population, consumption patterns, land use and urbanization are affecting its quality and future availability. In Andorra, a country located in the middle of the Pyrenees, the confluence of climate change and a socioeconomic model with an important weight of tourism industry based on an intensive use of water could threaten the future sustainability of water resources. </span></p><p><span>This paper analyses the water resources of Andorra and its future sustainability using the Water Evaluation And Planning system (WEAP) modelling tool. </span></p><p><span>The WEAP-Andorra model presents an initial estimate of the national water demand segregated into the main water consumers of the country (tourism, residential, primary sector and power generation). It explores the future evolution of water resources combining climatic and socioeconomic scenarios such as evolution of the population, tourism, power generation plans and land use patterns.</span></p><p><span>Results of scenarios show that in general terms and at country scale the impact of climate change will not compromise the future water demand. However, in some locations and in specific periods or seasons it could be some challenges to give response to all the demands and rise tensions about what water uses should be prioritized, especially between tourism and ski resort and resident uses.   </span></p><p><span>The WEAP model presented in this paper is demonstrated a useful tool to support management, decision-making and the design of policies for sustainable water management and adaptation to climate</span> change.</p>


2017 ◽  
Vol 113 (7/8) ◽  
Author(s):  
Abiodun A. Ogundeji ◽  
Henry Jordaan

Climate change and its impact on already scarce water resources are of global importance, but even more so for water scarce countries. Apart from the effect of climate change on water supply, the chill unit requirement of deciduous fruit crops is also expected to be affected. Although research on crop water use has been undertaken, researchers have not taken the future climate into consideration. They also have focused on increasing temperatures but failed to relate temperature to chill unit accumulation, especially in South Africa. With a view of helping farmers to adapt to climate change, in this study we provide information that will assist farmers in their decision-making process for adaptation and in the selection of appropriate cultivars of deciduous fruits. Crop water use and chill unit requirements are modelled for the present and future climate. Results show that, irrespective of the irrigation system employed, climate change has led to increases in crop water use. Water use with the drip irrigation system was lower than with sprinkler irrigation as a result of efficiency differences in the irrigation technologies. It was also confirmed that the accumulated chill units will decrease in the future as a consequence of climate change. In order to remain in production, farmers need to adapt to climate change stress by putting in place water resources and crop management plans. Thus, producers must be furnished with a variety of adaptation or management strategies to overcome the impact of climate change.


2012 ◽  
Vol 16 (1) ◽  
pp. 231-240 ◽  
Author(s):  
G. Q. Wang ◽  
J. Y. Zhang ◽  
J. L. Jin ◽  
T. C. Pagano ◽  
R. Calow ◽  
...  

Abstract. Climate change is now a major environmental and developmental issue, and one that will increase the challenge of sustainable water resources management. In order to assess the implications of climate change for water resources in China, we calibrated a Variable Infiltration Capacity (VIC) model with a resolution of 50×50 km2 using data from 125 well-gauged catchments. Based on similarities in climate conditions, soil texture and other variables, model parameters were transferred to other areas not covered by the calibrated catchments. Taking runoff in the period 1961–1990 as a baseline, we studied the impact of climate change on runoff under three emissions scenarios, A2, B2 and A1B. Model findings indicate that annual runoff over China as a whole will probably increase by approximately 3–10% by 2050, but with quite uneven spatial and temporal distribution. The prevailing pattern of "north dry and south wet" in China is likely to be exacerbated under global warming.


2021 ◽  
Vol 19 (4) ◽  
pp. 266-281
Author(s):  
Allan Sriratana Tabucanon ◽  
◽  
Areeya Rittima ◽  
Detchasit Raveephinit ◽  
Yutthana Phankamolsil ◽  
...  

Bhumibol Dam is the largest dam in the central region of Thailand and it serves as an important water resource. The dam’s operation relies on reservoir operating rules that were developed on the basis of the relationships among rainfall-inflow, water balance, and downstream water demand. However, due to climate change, changing rainfall variability is expected to render the reliability of the rule curves insecure. Therefore, this study investigated the impact of climate change on the reliability of the current reservoir operation rules of Bhumibol Dam. The future scenarios from 2000 to 2099 are based on EC-EARTH under RCP4.5 and RCP8.5 scenarios downscaled by RegCM4. MIKE11 HD was developed for the inflow simulation. The model generates the inflow well (R2=0.70). Generally, the trend of increasing inflow amounts is expected to continue in the dry seasons from 2000-2099, while large fluctuations of inflow are expected to be found in the wet seasons, reflecting high uncertainties. In the case of standard deviations, a larger deviation is predicted under the RCP8.5 scenario. For the reservoir’s operation in a climate change study, standard operating procedures were applied using historical release records to estimate daily reservoir release needed to serve downstream water demand in the future. It can be concluded that there is high risk of current reservoir operating rules towards the operation reliability under RCP4.5 (80% reliability), but the risk is lower under RCP8.5 (87% reliability) due to increased inflow amounts. The unmanageability occurs in the wet season, cautioning the need to redesign the rules.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7709
Author(s):  
Günter Müller-Czygan ◽  
Viktoriya Tarasyuk ◽  
Christian Wagner ◽  
Manuela Wimmer

Water is increasingly taking center stage when it comes to coping with climate change. Especially in urban areas, negative consequences from heavy rainfall events and prolonged dry periods are rising worldwide. In the past, the various tasks of urban water management were performed by different departments that often did not cooperate with each other (water supply, wastewater disposal, green space irrigation, etc.), as the required water supply was not a question of available water volumes. This is already changing with climate change, in some cases even dramatically. More and more, it is necessary to consider how to distribute available water resources in urban areas, especially during dry periods, since wastewater treatment is also becoming more complex and costly. In the future, urban water management will examine water use in terms of its various objectives, and will need to provide alternative water resources for these different purposes (groundwater, river water, storm water, treated wastewater, etc.). The necessary technological interconnection requires intelligent digital systems. Furthermore, the water industry must also play its role in global CO2 reduction and make its procedural treatment processes more efficient; this will also only succeed with adequate digital systems. Although digitization has experienced an enormous surge in development over the last five years and numerous solutions are available to address the challenges described previously, there is still a large gap between the scope of offerings and their implementation. Researchers at Hof University of Applied Sciences have investigated the reasons for this imbalance as part of WaterExe4.0, the first meta-study on digitization in the German-speaking water industry, funded by the German Federal Ministry of Education and Research. Only 11% of roughly 700 identified products, projects and studies relate to real applications. For example, the surveyed experts of the water sector stated that everyday problems are considered too little or hardly at all in new solutions, which greatly overburdens users. Furthermore, they see no adequate possibility for a systematic analysis of new ideas to identify significant obstacles and to find the best way to start and implement a digitization project. The results from four methodologically different sub-surveys (literature and market research, survey, expert interviews and workshops) provide a reliable overview of the current situation in the German-speaking water industry and its expectations for the future. The results are also transferable to other countries.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2516
Author(s):  
Yoonji Kim ◽  
Jieun Yu ◽  
Kyungil Lee ◽  
Hye In Chung ◽  
Hyun Chan Sung ◽  
...  

Highly concentrated precipitation during the rainy season poses challenges to the South Korean water resources management in efficiently storing and redistributing water resources. Under the new climate regime, water resources management is likely to become more challenging with regards to water-related disaster risk and deterioration of water quality. To alleviate such issues by adjusting management plans, this study examined the impact of climate change on the streamflow in the Bocheongcheon basin of the Geumgang river. A globally accepted hydrologic model, the HEC-HMS model, was chosen for the simulation. By the calibration and the validation processes, the model performance was evaluated to range between “satisfactory” and “very good”. The calibrated model was then used to simulate the future streamflow over six decades from 2041 to 2100 under RCP4.5 and RCP8.5. The results indicated significant increase in the future streamflow of the study site in all months and seasons over the simulation period. Intensification of seasonal differences and fluctuations was projected under RCP 8.5, implying a challenge for water resources managers to secure stable sources of clean water and to prevent water-related disasters. The analysis of the simulation results was applied to suggest possible local adaptive water resources management policy.


Author(s):  
Heman Das Lohano ◽  
Fateh Muhammad Marri

Water resources in Sindh province of Pakistan are under significant pressure due to increasing and conflicting water demand from municipalities for domestic users, agriculture and industries, and requirements of environmental flows. Population growth and climate change are likely to pose serious challenges to households and economic sectors that depend on water. This study estimates the present water demand from municipalities, agriculture and industries, and its future projections by the year 2050 in Sindh. The study also evaluates the impact of climate change on sectoral water demand and assesses the water requirements for the environmental flows. The results show that presently the total water demand for these sectors in Sindh is 44.06 Million Acre Feet (MAF). Agriculture is the largest consumer of water, accounting for 95.24 percent of the total water demand. Municipal water demand accounts for 2.61 percent while industrial water demand accounts for 1.88 percent. The demand for water in these sectors is expected to rise by 10 percent from 2018 to 2050. Moreover, depending on climate change scenario, the total water demand in these three sectors is likely to rise by 16 to 25 percent from 2018 to 2050. In additions, water requirements for the environmental flows have been indicated as 10 MAF in the National Water Accord of 1991. The findings of this study call for policy measures and strategies for management of water resources in Sindh.


2016 ◽  
Vol 8 (1) ◽  
pp. 10-21
Author(s):  
Narayan P Gautam ◽  
Manohar Arora ◽  
N.K. Goel ◽  
A.R.S. Kumar

Climate change has been emerging as one of the challenges in the global environment. Information of predicted climatic changes in basin scale is highly useful to know the future climatic condition in the basin that ultimately becomes helpful to carry out planning and management of the water resources available in the basin. Climatic scenario is a plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change. This study based on statistical downscaling, provide good example focusing on predicting the rainfall and runoff patterns, using the coarse general circulation model (GCM) outputs. The outputs of the GCMs are utilized to study the impact of climate change on water resources. The present study has been taken up to identify the climate change scenarios for Satluj river basin, India.Journal of Hydrology and Meteorology, Vol. 8(1) p.10-21


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Arie Herlambang

The total population Bontang in 2014 is around 187,346 peoples. With the level of domestic water demand of 110 liters /person/day, the water needs of the city for at least Bontang 238.52 liters/sec. Currently for the needs of the community water supply received from the local water company with a capacity of 80 liters/sec, and It will be developed further to 250 liters/second in 2015. There are two big industries that need huge of water, namely LNG and Fertilizers Factory.  Factory of East Kalimantan (PKT) need additional water supply around 1000 m3/h or (166.67 liters/sec) with the specifications for the Water Industry   and 200 m3/h will be used to supply the needs of water for 21 818 inhabitants. Bontang city water source can be derived from groundwater, rivers, and rain water storage (reservoirs of water). In recent decades Bontang relied upon groundwater for water supply industry and some communities, the rest use river water and rain water tandah. With a very heavy rainfall ( 2500 mm / year), then the making of ponds in large quantities can help to reserve water in the future. For the purposes of future water supplies, it would require an asessment of all potential water resources utilization and planning for the use of adapted to the urban development plan. Water recycling of domestic waste is also a potential source of fresh water in the future, especially for industrial use. The drainage system needs to be directed at a large holding pond located in a low area, before going into the sea. The rain that fell in the city drained and collected would be of potential if utilized. In short-term utilization of water of the Bontang river is very of potential, given its location in the city center and is one of the many watersheds in Bontang, causing floods in the rainy season. Control and management of water is needed to support the use of river water.Keywords: Water resources, Water Demand, Water Supply, and Water Balance


2012 ◽  
Vol 9 (11) ◽  
pp. 12395-12433 ◽  
Author(s):  
T. C. Yang ◽  
C. Chen ◽  
C. M. Kuo ◽  
H. W. Tseng ◽  
P. S. Yu

Abstract. This study aims at assessing the impact of climate change on drought risk in a water resources system in Southern Taiwan by integrating the weather generator, hydrological model and simulation model of reservoir operation. Three composite indices with multi-aspect measurements of reservoir performance (i.e. reliability, resilience and vulnerability) were compared by their monotonic behaviors to find a suitable one for the study area. The suitable performance index was then validated by the historical drought events and proven to have the capability of being a drought risk index in the study area. The downscaling results under A1B emission scenario from seven general circulation models were used in this work. The projected results show that the average monthly mean inflows during the dry season tend to decrease from the baseline period (1980–1999) to the future period (2020–2039); the average monthly mean inflows during the wet season may increase/decrease in the future. Based on the drought risk index, the analysis results for public and agricultural water uses show that the occurrence frequency of drought may increase and the severity of drought may be more serious during the future period than during the baseline period, which makes a big challenge on water supply and allocation for the authorities of reservoir in Southern Taiwan.


Sign in / Sign up

Export Citation Format

Share Document