Assessment of potential impact of climate change on streamflow: a case study of the Brahmani River basin, India

2018 ◽  
Vol 10 (3) ◽  
pp. 624-641 ◽  
Author(s):  
Kumari Vandana ◽  
Adlul Islam ◽  
P. Parth Sarthi ◽  
Alok K. Sikka ◽  
Hemlata Kapil

Abstract The impact of future climate change on streamflow in the Brahmani River basin, India has been assessed using a distributed parameter hydrological model Precipitation Runoff Modelling System (PRMS) and multi-model ensemble climate change scenarios. The multi-model ensemble climate change scenarios were generated using the Hybrid-Delta ensemble method for A2, A1B, and B1 emission scenarios for three different future periods of the 2020s (2010–2039), 2050s (2040–2069) and 2080s (2070–2099). There is an increase in annual mean temperature in the range of 0.8–1.0, 1.5–2.0 and 2.0–3.3 °C during the 2020s, 2050s, and 2080s, respectively. Annual rainfall is projected to change in the range of −1.6–1.6, 1.6–3.1, and 4.8–8.1% during the 2020s, 2050s and 2080s, respectively. Simulation results indicated changes in annual streamflow in the range of −2.2–2.5, 2.4–4.7, and 7.3–12.6% during the 2020s, 2050s, and 2080s, respectively. Simulation results showed an increase in high flows and reduction in low flows, but the frequency of both high and low flow increases during future periods. The results of this work will be useful in developing a water management adaptation plan in the study basin.

2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2017 ◽  
Vol 9 (3) ◽  
pp. 421-433 ◽  
Author(s):  
Hamed Rouhani ◽  
Marayam Sadat Jafarzadeh

Abstract A general circulation model (GCM) and hydrological model SWAT (Soil and Water Assessment Tool) under forcing from A1B, B1, and A2 emission scenarios by 2030 were used to assess the implications of climate change on water balance of the Gorganrood River Basin (GRB). The results of MPEH5C models and multi-scenarios indicated that monthly precipitation generally decreases while temperature increases in various parts of the basin with the magnitude of the changes in terms of different stations and scenarios. Accordingly, seasonal ET will decrease throughout the GRB over the 2020s in all seasons except in summer, where a slight increase is projected for A1B and A2 scenarios. At annual scale, average quick flow and average low flow under the B1, A1B, and A2 scenarios are projected to decrease by 7.3 to 12.0% from the historical levels. Over the ensembles of climate change scenarios, the simulations project average autumn total flow declines of ∼10% and an overall range of 6.9 to 13.2%. In summer, the components of flow at the studied basin are expected to increase under A2 and A1B scenarios but will slightly decrease under B1 scenario. The study result addresses a likelihood of inevitable future climate change.


2021 ◽  
Vol 13 (7) ◽  
pp. 3885
Author(s):  
Christos Spyrou ◽  
Michael Loupis ◽  
Νikos Charizopoulos ◽  
Ilektra Apostolidou ◽  
Angeliki Mentzafou ◽  
...  

Nature-based solutions (NBS) are being deployed around the world in order to address hydrometeorological hazards, including flooding, droughts, landslides and many others. The term refers to techniques inspired, supported and copied from nature, avoiding large constructions and other harmful interventions. In this work the development and evaluation of an NBS applied to the Spercheios river basin in Central Greece is presented. The river is susceptible to heavy rainfall and bank overflow, therefore the intervention selected is a natural water retention measure that aims to moderate the impact of flooding and drought in the area. After the deployment of the NBS, we examine the benefits under current and future climate conditions, using various climate change scenarios. Even though the NBS deployed is small compared to the rest of the river, its presence leads to a decrease in the maximum depth of flooding, maximum velocity and smaller flooded areas. Regarding the subsurface/groundwater storage under current and future climate change and weather conditions, the NBS construction seems to favor long-term groundwater recharge.


Author(s):  
Pedram Mahdavi ◽  
Hossein Ghorbanizadeh Kharazi ◽  
Hossein Eslami ◽  
Narges Zohrabi ◽  
Majid Razaz

Abstract Global warming affected by human activities causes changes in the regime of rivers. Rivers are one of the most vital sources that supply fresh water. Therefore, management, planning, and proper use of rivers will be crucial for future climate change conditions. This study investigated the monitoring of hydrological drought in a future period to examine the impact of climate change on the discharging flow of the Zard River basin in Iran. Zard River is an important supplier of fresh and agricultural water in a vast area of Khuzestan province in Iran. A continuous rainfall-runoff model based on Soil Moisture Accounting (SMA) algorithm was applied to simulate the discharge flow under 10 scenarios (obtained from LARS-WG.6 software) of future climate change. Then, the Stream-flow Drought Index (SDI) and the Standard Precipitation Index (SPI) were calculated for each climate change scenario for the future period (2041–2060). The results of the meteorological drought assessment showed that near normal and moderate droughts had higher proportions among other drought conditions. Moreover, the hydrological drought assessment showed the occurrence of two new droughts (severe and extreme) conditions for the future period (2041–2060) that has never happened in the past (1997–2016).


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1426
Author(s):  
Aminjon Gulakhmadov ◽  
Xi Chen ◽  
Nekruz Gulahmadov ◽  
Tie Liu ◽  
Muhammad Naveed Anjum ◽  
...  

Millions of people in Uzbekistan, Turkmenistan, Tajikistan, and Kyrgyzstan are dependent on the freshwater supply of the Vakhsh River system. Sustainable management of the water resources of the Vakhsh River Basin (VRB) requires comprehensive assessment regarding future climate change and its implications for streamflow. In this study, we assessed the potential impacts of projected climate change scenarios on the streamflow in the VRB for two future periods (2022–2060 and 2061–2099). The probable changes in the regional climate system were assessed using the outputs of five global climate models (GCMs) under two representative concentration pathways (RCPs), RCP4.5 and RCP8.5. The probable streamflow was simulated using a semi-distributed hydrological model, namely the Soil and Water Assessment Tool (SWAT). Evidence of a significant increase in the annual average temperature by the end of the 21st century was found, ranging from 2.25 to 4.40 °C under RCP4.5 and from 4.40 to 6.60 °C under RCP8.5. The results of three GCMs indicated a decreasing tendency of annual average precipitation (from −1.7% to −16.0% under RCP4.5 and from −3.4% to −29.8% under RCP8.5). Under RCP8.5, two GCMs indicated an increase (from 2.3% to 5.3%) in the average annual precipitation by the end of 2099. The simulated results of the hydrological model reported an increasing tendency of average annual streamflow, from 17.5% to 52.3% under both RCPs, by the end of 2099. A shift in the peak flow month was also found, i.e., from July to June, under both RCPs. It is expected that in the future, median and high flows might increase, whereas low flow might decrease by the end of 2099. It is concluded that the future seasonal streamflow in the VRB are highly uncertain due to the probable alterations in temperature and precipitation. The findings of the present study could be useful for understanding the future hydrological behavior of the Vakhsh River, for the planning of sustainable regional irrigation systems in the downstream countries, i.e., Uzbekistan and Turkmenistan, and for the construction of hydropower plants in the upstream countries.


2021 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Yanyun Xiang ◽  
Yi Wang ◽  
Yaning Chen ◽  
Qifei Zhang

Quantification of the impacts of climate change on streamflow and other hydrological parameters is of high importance and remains a challenge in arid areas. This study applied a modified distributed hydrological model (HEC-HMS) to the Yarkant River basin, China to assess hydrological changes under future climate change scenarios. Climate change was assessed based on six CMIP6 general circulation models (GCMs), three shared socio-economic pathways (SSP126, SSP245, SSP370), and several bias correction methods, whereas hydrological regime changes were assessed over two timeframes, referred to as the near future (2021–2049) and the far future (2071–2099). Results demonstrate that the DM (distribution mapping) and LOCI (local intensity scaling) bias correction methods most closely fit the projections of temperature and precipitation, respectively. The climate projections predicted a rise in temperature of 1.72–1.79 °C under the three SSP scenarios for the near future, and 3.76–6.22 °C under the three SSPs for the far future. Precipitation increased by 10.79–12% in the near future, and by 14.82–29.07% during the far future. It is very likely that streamflow will increase during both the near future (10.62–19.2%) and far future (36.69–70.4%) under all three scenarios. The increase in direct flow will be greater than baseflow. Summer and winter streamflow will increase the most, while the increase in streamflow was projected to reach a maximum during June and July over the near future. Over the far future, runoff reached a peak in May and June. The timing of peak streamflow will change from August to July in comparison to historical records. Both high- and low-flow magnitudes during March, April, and May (MAM) as well as June, July, and August (JJA) will increase by varying degrees, whereas the frequency of low flows will decrease during both MAM and JJA. High flow frequency in JJA was projected to decrease. Overall, our results reveal that the hydrological regime of the Yarkant River is likely to change and will be characterized by larger seasonal uncertainty and more frequent extreme events due to significant warming over the two periods. These changes should be seriously considered during policy development.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


Sign in / Sign up

Export Citation Format

Share Document