scholarly journals Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs

2021 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Yanyun Xiang ◽  
Yi Wang ◽  
Yaning Chen ◽  
Qifei Zhang

Quantification of the impacts of climate change on streamflow and other hydrological parameters is of high importance and remains a challenge in arid areas. This study applied a modified distributed hydrological model (HEC-HMS) to the Yarkant River basin, China to assess hydrological changes under future climate change scenarios. Climate change was assessed based on six CMIP6 general circulation models (GCMs), three shared socio-economic pathways (SSP126, SSP245, SSP370), and several bias correction methods, whereas hydrological regime changes were assessed over two timeframes, referred to as the near future (2021–2049) and the far future (2071–2099). Results demonstrate that the DM (distribution mapping) and LOCI (local intensity scaling) bias correction methods most closely fit the projections of temperature and precipitation, respectively. The climate projections predicted a rise in temperature of 1.72–1.79 °C under the three SSP scenarios for the near future, and 3.76–6.22 °C under the three SSPs for the far future. Precipitation increased by 10.79–12% in the near future, and by 14.82–29.07% during the far future. It is very likely that streamflow will increase during both the near future (10.62–19.2%) and far future (36.69–70.4%) under all three scenarios. The increase in direct flow will be greater than baseflow. Summer and winter streamflow will increase the most, while the increase in streamflow was projected to reach a maximum during June and July over the near future. Over the far future, runoff reached a peak in May and June. The timing of peak streamflow will change from August to July in comparison to historical records. Both high- and low-flow magnitudes during March, April, and May (MAM) as well as June, July, and August (JJA) will increase by varying degrees, whereas the frequency of low flows will decrease during both MAM and JJA. High flow frequency in JJA was projected to decrease. Overall, our results reveal that the hydrological regime of the Yarkant River is likely to change and will be characterized by larger seasonal uncertainty and more frequent extreme events due to significant warming over the two periods. These changes should be seriously considered during policy development.

2020 ◽  
Vol 12 (9) ◽  
pp. 3684
Author(s):  
Mohamed Salem Nashwan ◽  
Shamsuddin Shahid ◽  
Eun-Sung Chung

The present study projected future climate change for the densely populated Central North region of Egypt (CNE) for two representative concentration pathways (RCPs) and two futures (near future: 2020–2059, and far future: 2060–2099), estimated by a credible subset of five global climate models (GCMs). Different bias correction models have been applied to correct the bias in the five interpolated GCMs’ outputs onto a high-resolution horizontal grid. The 0.05° CNE datasets of maximum and minimum temperatures (Tmx, and Tmn, respectively) and the 0.1° African Rainfall Climatology (ARC2) datasets represented the historical climate. The evaluation of bias correction methodologies revealed the better performance of linear and variance scaling for correcting the rainfall and temperature GCMs’ outputs, respectively. They were used to transfer the correction factor to the projections. The five statistically bias-corrected climate projections presented the uncertainty range in the future change in the climate of CNE. The rainfall is expected to increase in the near future but drastically decrease in the far future. The Tmx and Tmn are projected to increase in both future periods reaching nearly a maximum of 5.50 and 8.50 °C for Tmx and Tmn, respectively. These findings highlighted the severe consequence of climate change on the socio-economic activities in the CNE aiming for better sustainable development.


2017 ◽  
Vol 9 (3) ◽  
pp. 421-433 ◽  
Author(s):  
Hamed Rouhani ◽  
Marayam Sadat Jafarzadeh

Abstract A general circulation model (GCM) and hydrological model SWAT (Soil and Water Assessment Tool) under forcing from A1B, B1, and A2 emission scenarios by 2030 were used to assess the implications of climate change on water balance of the Gorganrood River Basin (GRB). The results of MPEH5C models and multi-scenarios indicated that monthly precipitation generally decreases while temperature increases in various parts of the basin with the magnitude of the changes in terms of different stations and scenarios. Accordingly, seasonal ET will decrease throughout the GRB over the 2020s in all seasons except in summer, where a slight increase is projected for A1B and A2 scenarios. At annual scale, average quick flow and average low flow under the B1, A1B, and A2 scenarios are projected to decrease by 7.3 to 12.0% from the historical levels. Over the ensembles of climate change scenarios, the simulations project average autumn total flow declines of ∼10% and an overall range of 6.9 to 13.2%. In summer, the components of flow at the studied basin are expected to increase under A2 and A1B scenarios but will slightly decrease under B1 scenario. The study result addresses a likelihood of inevitable future climate change.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1426
Author(s):  
Aminjon Gulakhmadov ◽  
Xi Chen ◽  
Nekruz Gulahmadov ◽  
Tie Liu ◽  
Muhammad Naveed Anjum ◽  
...  

Millions of people in Uzbekistan, Turkmenistan, Tajikistan, and Kyrgyzstan are dependent on the freshwater supply of the Vakhsh River system. Sustainable management of the water resources of the Vakhsh River Basin (VRB) requires comprehensive assessment regarding future climate change and its implications for streamflow. In this study, we assessed the potential impacts of projected climate change scenarios on the streamflow in the VRB for two future periods (2022–2060 and 2061–2099). The probable changes in the regional climate system were assessed using the outputs of five global climate models (GCMs) under two representative concentration pathways (RCPs), RCP4.5 and RCP8.5. The probable streamflow was simulated using a semi-distributed hydrological model, namely the Soil and Water Assessment Tool (SWAT). Evidence of a significant increase in the annual average temperature by the end of the 21st century was found, ranging from 2.25 to 4.40 °C under RCP4.5 and from 4.40 to 6.60 °C under RCP8.5. The results of three GCMs indicated a decreasing tendency of annual average precipitation (from −1.7% to −16.0% under RCP4.5 and from −3.4% to −29.8% under RCP8.5). Under RCP8.5, two GCMs indicated an increase (from 2.3% to 5.3%) in the average annual precipitation by the end of 2099. The simulated results of the hydrological model reported an increasing tendency of average annual streamflow, from 17.5% to 52.3% under both RCPs, by the end of 2099. A shift in the peak flow month was also found, i.e., from July to June, under both RCPs. It is expected that in the future, median and high flows might increase, whereas low flow might decrease by the end of 2099. It is concluded that the future seasonal streamflow in the VRB are highly uncertain due to the probable alterations in temperature and precipitation. The findings of the present study could be useful for understanding the future hydrological behavior of the Vakhsh River, for the planning of sustainable regional irrigation systems in the downstream countries, i.e., Uzbekistan and Turkmenistan, and for the construction of hydropower plants in the upstream countries.


2018 ◽  
Vol 10 (3) ◽  
pp. 624-641 ◽  
Author(s):  
Kumari Vandana ◽  
Adlul Islam ◽  
P. Parth Sarthi ◽  
Alok K. Sikka ◽  
Hemlata Kapil

Abstract The impact of future climate change on streamflow in the Brahmani River basin, India has been assessed using a distributed parameter hydrological model Precipitation Runoff Modelling System (PRMS) and multi-model ensemble climate change scenarios. The multi-model ensemble climate change scenarios were generated using the Hybrid-Delta ensemble method for A2, A1B, and B1 emission scenarios for three different future periods of the 2020s (2010–2039), 2050s (2040–2069) and 2080s (2070–2099). There is an increase in annual mean temperature in the range of 0.8–1.0, 1.5–2.0 and 2.0–3.3 °C during the 2020s, 2050s, and 2080s, respectively. Annual rainfall is projected to change in the range of −1.6–1.6, 1.6–3.1, and 4.8–8.1% during the 2020s, 2050s and 2080s, respectively. Simulation results indicated changes in annual streamflow in the range of −2.2–2.5, 2.4–4.7, and 7.3–12.6% during the 2020s, 2050s, and 2080s, respectively. Simulation results showed an increase in high flows and reduction in low flows, but the frequency of both high and low flow increases during future periods. The results of this work will be useful in developing a water management adaptation plan in the study basin.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


Author(s):  
Dao Nguyen Khoi ◽  
Truong Thao Sam ◽  
Pham Thi Loi ◽  
Bui Viet Hung ◽  
Van Thinh Nguyen

Abstract In this paper, the responses of hydro-meteorological drought to changing climate in the Be River Basin located in Southern Vietnam are investigated. Climate change scenarios for the study area were statistically downscaled using the Long Ashton Research Station Weather Generator tool, which incorporates climate projections from Coupled Model Intercomparison Project 5 (CMIP5) based on an ensemble of five general circulation models (Can-ESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) under two Representative Concentration Pathway (RCP) scenarios (RCP4.5 and RCP8.5). The Soil and Water Assessment Tool model was employed to simulate streamflow for the baseline time period and three consecutive future 20 year periods of 2030s (2021–2040), 2050s (2041–2060), and 2070s (2061–2080). Based on the simulation results, the Standardized Precipitation Index and Standardized Discharge Index were estimated to evaluate the features of hydro-meteorological droughts. The hydrological drought has 1-month lag time from the meteorological drought and the hydro-meteorological droughts have negative correlations with the El Niño Southern Oscillation and Pacific Decadal Oscillation. Under the climate changing impacts, the trends of drought severity will decrease in the future; while the trends of drought frequency will increase in the near future period (2030s), but decrease in the following future periods (2050 and 2070s). The findings of this study can provide useful information to the policy and decisionmakers for a better future planning and management of water resources in the study region.


Author(s):  
S. Rani ◽  
S. Sreekesh ◽  
P. Krishnan

<p><strong>Abstract.</strong> Appraisal of potential evapotranspiration (PET) is needed for estimating the agricultural water requirement and understanding hydrological processes in an arena. Therefore, aim of the paper was to estimate the PET in the upper Beas basin, situated in the Western Indian Himalaya, under future climate change scenarios (by mid-21st century). Climate data (1969&amp;ndash;2010) of Manali, Bhuntar and Katrain were obtained from India Meteorological Department (IMD) and the Indian Agricultural Research Institute (IARI). Landsat data were used for mapping land use/land cover (LULC) conditions of the basin through decision tree technique. Elevation detail of the catchment area is derived from the Cartosat-1 digital elevation model (DEM). Simulations of PET were done by the Soil and Water Assessment Tool (SWAT) model. The model was calibrated using the average monthly discharge data from Thalout station. The study found fluctuations in PET under different climate change scenarios. It is likely to increase in near future owing to the rise in temperature. The higher water demand can be met from the excess snowmelt water reaching the lower basin area during the cropping seasons. This study will be helpful to understand water availability conditions in the upper Beas basin in the near future.</p>


2019 ◽  
Vol 01 (01) ◽  
pp. 1950003 ◽  
Author(s):  
AIDI HUO ◽  
XIAOFAN WANG ◽  
YUXIANG CHENG ◽  
CHUNLI ZHENG ◽  
CHENG JIANG

Assessing the impacts of climate change on hydrological regime and associated social and economic activities (such as farming) is important for water resources management in any river basin. In this study, we used the popular Soil and Water Assessment Tool (SWAT) to evaluate the impacts of future climate change on the availability of water resources in the Heihe River basin located within Shaanxi Province, China, in terms of runoff and streamflow. The results show that over the next 40 years (starting in 2020 till 2059), changes in the averaged annual runoff ratio are approximately [Formula: see text]11.0%, [Formula: see text]6.4%, 7.2%, and 20.4% for each of the next four consecutive decades as compared to the baseline period (2010–2019). The predicted annual runoff demonstrates an increase trend after a reduction and may result in increased drought and flood risk in the Heihe River basin. To minimize or mitigate these impacts, various adaptation methods have been proposed for the study area, such as stopping irrigation, flood control operation; reasonable development and utilization of regional underground water sources should be implemented in Zhouzhi county and Huyi region in the lower reaches of Heihe River basin.


2019 ◽  
Vol 11 (17) ◽  
pp. 4764 ◽  
Author(s):  
Anna Sperotto ◽  
Josè Luis Molina ◽  
Silvia Torresan ◽  
Andrea Critto ◽  
Manuel Pulido-Velazquez ◽  
...  

With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 different combinations of a global climate model (GCM)–regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in mid- (2041–2070) and long-term (2071–2100) periods with respect to the baseline (1983–2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between different GCM–RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources.


Sign in / Sign up

Export Citation Format

Share Document