scholarly journals Effect of sustainable management of olive tree residues on soil fertility in irrigated and rain-fed olive orchards

2018 ◽  
Vol 9 (4) ◽  
pp. 764-774 ◽  
Author(s):  
V. Kavvadias ◽  
M. Papadopoulou ◽  
E. Vavoulidou ◽  
S. Theocharopoulos ◽  
G. Koubouris ◽  
...  

Abstract Olive trees are a major source of agricultural residues. Strategies based on different management of organic amendments have been reported to increase soil fertility. The effect of sustainable organic matter input practices (application of shredded pruning residue and olive residue compost to soil) on soil properties in irrigated and rain-fed olive groves was investigated. The study took place in 40 olive groves in the region of Peza, island of Crete, Greece during a 5-year period (2012–2017). The results showed that olive trees play an important role in soil nutrient conservation under semi-arid conditions in the Mediterranean basin. The addition of olive tree residues, in combination with conservation tillage practices, improved soil fertility over the experimental period. Most of the soil properties were favored by irrigation. In olive soil parcels receiving organic materials the soil organic matter and the total nitrogen were increased in irrigated fields. The ability of surface soil to sequester carbon and nutrients beneath the tree canopy of olive groves was high. It is recommended that sustainable soil management practices should consider soil fertility variability of olive orchards.

2021 ◽  
Vol 13 (23) ◽  
pp. 13278
Author(s):  
Nikolaos V. Paranychianakis ◽  
Giorgos Giannakis ◽  
Daniel Moraetis ◽  
Vasileios A. Tzanakakis ◽  
Nikolaos P. Nikolaidis

The agricultural soils in the Mediterranean are characterized by low stocks of soil organic matter (SOM) because of the intensive management practices and constraints on litter inputs to the soil imposed by environmental conditions (low precipitation, high evapotranspiration). To date, several studies have provided evidence for a low potential of Mediterranean agroecosystems, especially on its southern part, to store C, even under soil conservation practices (e.g., non-tillage), questioning the capacity of commonly applied practices to restore soil health, mitigate climate change and improve resilience of agroecosystems to climate extremes. Using paired orchards of avocado and olive trees, we show that soils in the South Mediterranean have a high potential for C storage that depends strongly on crop type and soil properties. Soils planted with avocado trees showed higher SOM contents compared to olive trees mainly in the upper soil layer (0–10 cm) which were linked to higher inputs and litter chemistry. Our findings enable us to re-define achievable thresholds of SOC (≈8%) in Southern Mediterranean soils to store C, to quantify the effect of different cropping systems, and the period required to reach this potential and how this potential is affected by soil properties. Thus, the findings have profound implications for the design of soil conservation practices compatible with Mediterranean conditions and developing initiatives describing achievable targets of SOM restoration depending on soil properties and cropping systems.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 35 ◽  
Author(s):  
Telak ◽  
Bogunovic ◽  
Rodrigo-Comino

Humans are the driving factor of soil erosion and degradation. Therefore, sustainable land management practices should be developed and applied. The aim of this study was to determine land management impacts on soil properties, soil loss and nutrient loss in 3 different treatments; grass-covered vineyard (GCV), tilled vineyard (TV), and tilled hazelnut orchard (HO). The study area is located in Orahovica, Croatia (45°31′ N, 17°51′ E; elevation 230 m) on ~7° slope. The soil under the study area was classified as a Stagnosol. 8 rainfall simulations (58 mm h−1, during 30 min, over 0.785 m2 plots) were performed at each treatment where the next data were noted: ponding time, runoff time, and collection of overland flow. Soil samples were taken for determination of mean weight diameter (MWD), water stable aggregates (WSA), P2O5 content, and organic matter content. Analyses of sediment revealed concentrations of P2O5 and N. All three treatments had significantly different values of MWD (GCV 3.30 mm; TV 2.94 mm; HO 2.16 mm), while WSA and organic matter significantly differs between GCV and HO. The infiltration rate showed no significant difference between treatments. Sediment yield was significantly the highest at the TV (21.01 g kg−1 runoff), while no significant difference was noted between GCV (2.91) and HO (6.59). Sediments of GCV treatment showed higher concentrations of P2O5 and N, compared to TV and HO. Nutrients loss was highest in the TV (450.3 g P2O5 ha−1; 1891.7 g N ha−1) as a result of highest sediment yield, despite the fact GCV had the highest nutrients concentrations. Results indicate that land management (and/or tillage) affects soil properties and their stability. Even tough HO was tilled and had the lowest values of organic matter, WSA, and MWD, measurements were performed immediately after tillage where the plant residues reduced potential erodibility of the soil. Such results reveal that tillage should be avoided in vineyard and hazelnut production in order to prevent soil and nutrient losses.


2017 ◽  
Vol 38 (5) ◽  
pp. 2921 ◽  
Author(s):  
Iara Maria Lopes ◽  
Shirlei Almeida Assunção ◽  
Ana Paula Pessim de Oliveira ◽  
Lúcia Helena Cunha dos Anjos ◽  
Marcos Gervasio Pereira ◽  
...  

The gradual change in management practices in sugarcane (Saccharum spp.) production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM) contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1) soil fertility parameters; (2) on physical carbon fractions; (3) and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT) or minimum tillage (MT)) and subplots (residue burned or unburned at harvesting), with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC) were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.


2006 ◽  
Vol 21 (1) ◽  
pp. 49-59 ◽  
Author(s):  
B.J. Wienhold ◽  
J.L. Pikul ◽  
M.A. Liebig ◽  
M.M. Mikha ◽  
G.E. Varvel ◽  
...  

AbstractSoils perform a number of essential functions affecting management goals. Soil functions were assessed by measuring physical, chemical, and biological properties in a regional assessment of conventional (CON) and alternative (ALT) management practices at eight sites within the Great Plains. The results, reported in accompanying papers, provide excellent data for assessing how management practices collectively affect agronomic and environmental soil functions that benefit both farmers and society. Our objective was to use the regional data as an input for two new assessment tools to evaluate their potential and sensitivity for detecting differences (aggradation or degradation) in management systems. The soil management assessment framework (SMAF) and the agro-ecosystem performance assessment tool (AEPAT) were used to score individual soil properties at each location relative to expected conditions based on inherent soil-forming factors and to compute index values that provide an overall assessment of the agronomic and environmental impact of the CON and ALT practices. SMAF index values were positively correlated with grain yield (an agronomic function) and total organic matter (an agronomic and environmental function). They were negatively correlated with soil nitrate concentration at harvest (an indicator of environmental function). There was general agreement between the two assessment tools when used to compare management practices. Users can measure a small number of soil properties and use one of these tools to easily assess the effectiveness of soil management practices. A higher score in either tool identifies more environmentally and agronomically sustainable management. Temporal variability in measured indicators makes dynamic assessments of management practices essential. Water-filled pore space, aggregate stability, particulate organic matter, and microbial biomass were sensitive to management and should be included in studies aimed at improving soil management. Reductions in both tillage and fallow combined with crop rotation has resulted in improved soil function (e.g., nutrient cycling, organic C content, and productivity) throughout the Great Plains.


2020 ◽  
Author(s):  
Mariano Marcos-Pérez ◽  
Virginia Sánchez-Navarro ◽  
Raúl Zornoza

&lt;p&gt;Including legumes in intercropping systems may be regarded as a sustainable way to improve soil quality, fertility and land productivity, mostly due to facilitation processes and high rhizospheric activity which can mobilize soil nutrients for plants. Improvements in production and soil quality depend on inherent soil properties, climatic conditions, adopted management practices and fertilization, among others. The aim of this study was to assess the effect of the association between broccoli (Brassica oleracea var italica) and fava bean (Vicia fava) grown under different intercropping patterns on crop production, soil organic carbon (SOC), total nitrogen (Nt), soil aggregate stability (SAS) and soil fertility, compared to a broccoli monocrop. We defined a randomised block field experiment with three replications assessing the effect of monocropping, row 1:1 intercropping, row 2:1 intercropping and mix intercropping, with 30% reduction in fertilization in intercropped systems compared to monocrop. Soil sampling took place at harvest in February 2019. Results showed that the broccoli-fava bean intercropping significantly increased the general land production, with similar broccoli yield of 20000 kg ha&lt;sup&gt;-1 &lt;/sup&gt;in all treatments, plus 8000 kg ha&lt;sup&gt;-1&lt;/sup&gt; coming from fava bean. Crop diversification and fava bean cultivation even in monocrop significantly increased SOC and Nt compared to broccoli monocrop. SOC and Nt were 1.06% and 0.09%, respectively, for broccoli monocrop, while they had average values of 1.29% and 0.12%, respectively for the intercropped systems. SAS was also significantly affected by crop diversification, with increases in the proportion of the macroaggregates (size &gt;2 mm) with intercropping. Broccoli monocrop showed an average proportion of these macroaggregates of 9.19%, while they increased up to 17.51% in intercropped systems. CEC was not significantly affected by intercropping SAS showing almost same percentage of aggregates independently of the treatment. Available P significantly increased in intercropped systems, likely due to increased microbial activity with the simultaneous growth of the two crop species. However, no significant effect of intercropping was observed with any other nutrient (Ca, Mg, K, Mn, Cu, Fe, Zn and B), suggesting that microbial communities activated by the crop association are highly related to P mobilization but not so intensively involved in other nutrients. Thus, intercropping systems like broccoli-fava bean association can be regarded as a viable alternative for sustainable crop production while increasing soil fertility despite reducing the addition of external fertilization. However, more crop cycles are needed to confirm this trend.&lt;/p&gt;


2016 ◽  
Vol 8 (2) ◽  
pp. 67
Author(s):  
M. Al-Jabri

Agricultural lands of Donggala region are extensively distributed in alluvial plain. However, information on soil properties and fertility constraints has not been known in detail. An investigation of soil resources was conducted in September 2003 and December 2004 to characterize surface soil properties of alluvial plain and to evaluate soil fertility constraints. For this study, 55 representative soil profiles consisting of 187 soil samples were selected for physical, chemical, and mineralogical analyses. The soil profiles were classified as soil groups of Ustifluvents, Haplustepts, Eutrudepts, and Endoaquepts. All the soil physical and chemical data were calculated as weighted average based on top 30 cm soil layer analyses. The results showed that soil texture ranged from sandy loam to loam. In ustic moisture regime, the average pH was neutral (7.0-7.2), but in udic moisture regime it was slightly acid (5.5-6.2). In all soil groups, the organic carbon content was very low to low (0.58-1.44%), P retention was very low (3-18%), and soil cation exchange capacity (CEC) was very low to low (9-14 cmol(+) kg-1). In contrast, all the soil groups showed very high content of potential phosphate (81- 118 mg P2O5 100 g-1) and potassium (338-475 mg K2O 100 g-1), but the available phosphate and potassium were 16-47 mg kg-1 P and 0.18-0.35 cmol(+) kg-1, respectively, which were considered to be low to medium range. The very high P2O5 and K2O were probably derived from weathered mica-schist and granite rocks, but low exchangeable K was probably due to K fixation. The sand mineral fraction was composed of relatively high (&gt; 20%) weatherable minerals of acid parent materials, such as orthoclase and sanidine, while the clay mineral was composed of smectite and illite. The low soil-CEC, low organic matter, and exchangeable K contents were the main soil fertility constraints. Therefore, soil management should be directed to organic matter application to increase soil carbon content, CEC, and nutrient availability. Fertilizer recommendation for wetland rice and several upland crops is suggested based on the soil properties.


2021 ◽  
Vol 14 (1) ◽  
pp. 391
Author(s):  
Yiannis G. Zevgolis ◽  
Efstratios Kamatsos ◽  
Triantaphyllos Akriotis ◽  
Panayiotis G. Dimitrakopoulos ◽  
Andreas Y. Troumbis

Conservation of traditional olive groves through effective monitoring of their health state is crucial both at a tree and at a population level. In this study, we introduce a comprehensive methodological framework for estimating the traditional olive grove health state, by considering the fundamental phenotypic, spectral, and thermal traits of the olive trees. We obtained phenotypic information from olive trees on the Greek island of Lesvos by combining this with in situ measurement of spectral reflectance and thermal indices to investigate the effect of the olive tree traits on productivity, the presence of the olive leaf spot disease (OLS), and olive tree classification based on their health state. In this context, we identified a suite of important features, derived from linear and logistic regression models, which can explain productivity and accurately evaluate infected and noninfected trees. The results indicated that either specific traits or combinations of them are statistically significant predictors of productivity, while the occurrence of OLS symptoms can be identified by both the olives’ vitality traits and by the thermal variables. Finally, the classification of olive trees into different health states possibly offers significant information to explain traditional olive grove dynamics for their sustainable management.


2018 ◽  
Vol 48 (3) ◽  
pp. 316-322 ◽  
Author(s):  
Flávia Levinski-Huf ◽  
Vilson Antonio Klein

ABSTRACT Soil management practices and uses, in the integrated crop-livestock-forestry (ICLF) production system, influence the soil properties in different ways. This study aimed to assess the organic matter content and physical properties of a Red Latosol (Oxisol), in the forestry and crop components of an ICLF system. A split-plot randomized block design was used, with six blocks containing two main plots (forestry and crop) and eight split plots (sampled soil layers), totaling 16 treatments and 96 samples. The following variables were analyzed: organic matter, soil density, relative density, pore size distribution, Atterberg limits and aggregate stability. The presence of the forestry component improves the mean weight and geometric mean diameters, as well as the aggregates stability index of the Red Latosol, at five years after the implementation of the system. The aggregates stability in water and the Atterberg limits are the soil physical properties that better express the changes in the soil, with the inclusion of the forestry component. Including this component in the production system, throughout the years (> 5 years), improves the soil properties.


2021 ◽  
Author(s):  
Ozias Hounkpatin ◽  
Aymar Bossa ◽  
Mouinou Igué ◽  
Yacouba Yira ◽  
Brice Sinsin

&lt;p&gt;Indicators of soil production function such as soil fertility index can potentially be a key decision tool in spatial planning for sustainable land management. The establishment of such soil fertility index requires basic soil properties which can be modelled for spatial mapping. The objective of this study was to take advantage of the soil legacy data of Benin to produce a digital soil map of soil fertility index at a national scale based on 8 soil properties (soil organic carbon matter, nitrogen, pH, exchangeable potassium, assimilable phosphorus, sum of base, cation exchange capacity and base saturation). Speci&amp;#64257;c research aims were: (1) to model and develop digital soil maps; (2) to identify important factors influencing soil nutrients; (3) to establish soil fertility potentials using digital soil maps. For each soil property, modelling procedures involved the use of di&amp;#64256;erent covariates including soil type, topographic, bioclimatic and spectral data along with the comparative assessment of the Cubist and Quantile Random Forest model. Results revealed that apart from N and exchangeable K, significant models can be produced for most of the soil properties with R-square varying between 28% and 72% with the Quantile Random Forest presenting a more accurate prediction interval coverage probability. The analysis revealed that the distance to the nearest stream has strong predictive ability for all the soil properties along with the bioclimatic variables. Visualisation of the soil fertility map showed that most of the soils in Benin have low fertility level suggesting that the use of fertilizers and organic materials will be critical in sustaining crop productivity. A limited number of high and average fertility level soils were found in the low elevation areas of southern Benin and policy could advocate for their sole use for agriculture purpose as well as promote sustainable management practices.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document