scholarly journals Groundwater development, use, and its quality in Korea: tasks for sustainable use

Water Policy ◽  
2021 ◽  
Author(s):  
Jin-Yong Lee ◽  
Jihye Cha ◽  
Maimoona Raza

Abstract In this study, the current state of groundwater development and use and groundwater quality has been examined based on official groundwater data collected from the Republic of Korea. The groundwater data indicate a steady increase in the number of groundwater wells and an increase in groundwater pumping. The well diameters also increase with increasing well depth, owing to the development of drilling technology. Although groundwater is predominantly used for agricultural and living purposes, the former has recently outnumbered the latter. According to the groundwater quality monitoring stations covering the entire country, the groundwater levels, dissolved oxygen, and oxidation–reduction potential decrease with a steady increase in the water temperature, pH, and electrical conductivity, indicating an aggravating groundwater environment in this region. The most concerning contaminants found are nitrate, ammonia, arsenic, zinc, toluene, xylene, chloroform, and fluoride. Thus, based on these observations, we propose three essential tasks for sustainable groundwater use: a paradigm shift in groundwater management, conjunctive use and integrated management of groundwater and stream water, and groundwater governance and data quality control.

2020 ◽  
Vol 3 (1) ◽  
pp. 22-36 ◽  
Author(s):  
Shankar Karuppannan ◽  
Nafyad Serre Kawo

Assessment of groundwater quality is vital for the sustainable use of the resources for domestic and agricultural purposes. In this study spatial variation of physicochemical parameters were analyzed for Northeast Adama Town. Water Quality Index (WQI) and irrigation indices were used to determine the suitability of groundwater for drinking and irrigation purposes, respectively. Further, the physical-chemical results were compared with the Ethiopian standards and the World Health Organization (WHO) standards for drinking and public health. Using GIS interpolation methods in Arc GIS 10.3.1, spatial distribution maps of pH, TDS, EC, Cl−, HCO32−, SO42−, Ca2+, Mg2+, Na+ and K+, RSC, SAR, Na% were prepared. Results indicated that except ASTU well 2, all samples are below the desirable limits of WHO. The WQI results indicated that 85% of samples and 15% of samples were in good and poor categories, respectively. Irrigation indices show that the most groundwater samples have excellent water classes, indicating that they are suitable for irrigation purposes.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Kyoochul Ha ◽  
Eunhee Lee ◽  
Hyowon An ◽  
Sunghyun Kim ◽  
Changhui Park ◽  
...  

This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1971
Author(s):  
Asad Sarwar Qureshi

The Gulf Cooperation Council (GCC) countries are located in the driest part of the world with an annual per capita water availability of 500 m3 compared to the world average of 6000 m3. Agricultural water demand, which is more than 80% of the total water consumption, is primarily met through the massive exploitation of groundwater. The enormous imbalance between groundwater discharge (27.8 billion m3) and recharge (5.3 billion m3) is causing the excessive lowering of groundwater levels. Therefore, GCC countries are investing heavily in the production of nonconventional water resources such as desalination of seawater and treated wastewater. Currently, 439 desalination plants are annually producing 5.75 billion m3 of desalinated water in the GCC countries. The annual wastewater collection is about 4.0 billion m3, of which 73% is treated with the help of 300 wastewater treatment plants. Despite extreme water poverty, only 39% of the treated wastewater is reused, and the remaining is discharged into the sea. The treated wastewater (TWW) is used for the landscape, forestry, and construction industries. However, its reuse to irrigate food and forage crops is restricted due to health, social, religious, and environmental concerns. Substantial research evidence exists that treated wastewater can safely be used to grow food and forage crops under the agroclimatic conditions of the GCC countries by adopting appropriate management measures. Therefore, GCC countries should work on increasing the use of TWW in the agriculture sector. Increased use of TWW in agriculture can significantly reduce the pressure on freshwater resources. For this purpose, a comprehensive awareness campaign needs to be initiated to address the social and religious concerns of farming communities and consumers. Several internal and external risks can jeopardize the sustainable use of treated wastewater in the GCC countries. These include climate change, increasing costs, technological and market-driven changes, and regional security issues. Therefore, effective response mechanisms should be developed to mitigate future risks and threats. For this purpose, an integrated approach involving all concerned local and regional stakeholders needs to be adopted.


2013 ◽  
Vol 10 (6) ◽  
pp. 3849-3868 ◽  
Author(s):  
J. L. J. Ledesma ◽  
T. Grabs ◽  
M. N. Futter ◽  
K. H. Bishop ◽  
H. Laudon ◽  
...  

Abstract. Riparian zones (RZ) are a major factor controlling water chemistry in forest streams. Base cations' (BC) concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM) approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.


Author(s):  
K. Furuno ◽  
A. Kagawa ◽  
O. Kazaoka ◽  
T. Kusuda ◽  
H. Nirei

Abstract. Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.


2020 ◽  
pp. 32-45
Author(s):  
D.O. Egorov ◽  
◽  

The article analyzes the directions and intensity of rural population depopulation from the standpoint of its influence on the transformation of settlement in the Republic of Tatarstan from the 1970s to the present. Three periods of changes in the distribution of the rural population were identified: soviet (1970–1991), de-urbanization (1991–2000) and suburbanization (weakly expressed in the 2000s and clearly pronounced since the 2010s). The first period under consideration fell on the peak of the decline in the rural population, but the pole near the regional center depopulated less intensively than the distant periphery. The de-urbanization period did not have clear territorial trends in changes in the number of inhabitants. In the 2010s. There is a steady increase in the population in the areas of neighbors of the largest cities of the republic. A more detailed study showed that this increase is largely associated with the settlement of urban-type residential complexes. 1970 to 2019 the share of rural residents living in areas bordering the city of Kazan and Naberezhnye Chelny increased from 15.1 to 25%. Similar polarization processes are taking place at the municipal level. The period considered from 2002 to 2019 showed the process of increasing the share of the population of the administrative center from the total population of the district. In more than half of the cases, this process took place due to population growth in the centers of municipalities and the decline of the rest of the population. The population in other municipalities decreased in the administrative centers less intensively than outside them.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 528 ◽  
Author(s):  
Fei Gao ◽  
Gary Feng ◽  
Ming Han ◽  
Padmanava Dash ◽  
Johnie Jenkins ◽  
...  

The groundwater level in the Big Sunflower River Watershed (BSRW) in the U.S. has declined significantly in the past 30 years. Therefore, it is imperative to assess surface water resources (SWR) availability in BSRW to mitigate groundwater use for irrigation. This research applied the coupled Soil and Water Assessment Tool–Modular Groundwater Flow model (SWAT–MODFLOW) to assess SWR in BSRW. This study aimed at: (1) Assessing the reliability of SWAT–MODFLOW in BSRW, (2) analyzing temporal and spatial variations of SWR, and (3) assessing the potential availability of SWR in BSRW. Calibration and validation results showed that SWAT–MODFLOW can well simulate streamflow and groundwater levels in BSRW. Our results showed that BSRW had lower average monthly total stream resources (MSR = 8.8 × 107 m3) in growing seasons than in non-growing seasons (MSR = 11.0 × 107 m3), and monthly pond resources (MPR from 30,418 to 30,494 m3) varied less than stream resources. The proportion of sub-basins in BSRW with stream water resources greater than 700 mm was 21% in dry years (229 to 994 mm), while this increased to 35% in normal years (296 to 1141 mm) and 57% in wet years (554 to 991 mm). The Water Stress Index (WSI) ranged from 0.4 to 2.1, revealing that most of the sub-basins in BSRW have net SWR available for irrigation. Our results suggested that surface water resources might be supplementary irrigation sources to mitigate the water resources scarcity in this region.


Sign in / Sign up

Export Citation Format

Share Document