NEREDA®: an emerging technology for sewage treatment

2015 ◽  
Vol 10 (4) ◽  
pp. 799-805 ◽  
Author(s):  
Abid Ali Khan ◽  
Mahmood Ahmad ◽  
Andreas Giesen

Stringent environmental regulations and severe water pollution has divert the attention of stakeholders, water boards and ministries dealing with the water resources and environment to explore new technologies to make rivers and water bodies free from pollution. Recently an aerobic granular biomass based technology; named NEREDA® has been gaining wide publicity around the globe. It has several advantages such as less power requirement, no need of chemicals and its compactness due to high mixed liquor suspended solids, significantly less capital and operational costs. NEREDA® can be regarded as an alternative to conventional aerobic technology for sewage and industrial wastewater treatment. Recently NEREDA® technology has been installed at sewage treatment plants in Europe, South Africa and few are under pipeline in parts of Latin America, Israel and India.

Eisei kagaku ◽  
1993 ◽  
Vol 39 (5) ◽  
pp. 401-408
Author(s):  
YUICHI MIYABARA ◽  
KEIKO SAKAMOTO ◽  
JUNZO SUZUKI ◽  
SHIZUO SUZUKI

2010 ◽  
Vol 62 (3) ◽  
pp. 701-707 ◽  
Author(s):  
M. Majewsky ◽  
T. Gallé ◽  
L. Zwank ◽  
K. Fischer

The influence of activated sludge quality on the co-metabolic biodegradation of three aminopolycarboxyl acids was investigated for a variety of Luxembourg sewage treatment plants. A combination of biodegradation experiments and respirometric techniques are presented as a reliable approach for the estimation of biokinetics and biological xenobiotic degradation rates that allow for identification of governing parameters such as microbial activity and active biomass. Results showed that biokinetics and degradation rates vary greatly between different plants. The fraction of active biomass on the total suspended solids ranged between 16.9 and 53.7%. Xenobiotic biodegradation rates correlated with microbial activity suggesting a relationship with WWTP performance for carbon and nutrient removal. The biokinetic information can be used to increase the prediction accuracy of xenobiotics removal by individual WWTPs.


2018 ◽  
Vol 28 (3) ◽  
pp. 121-131 ◽  
Author(s):  
Anita Jakubaszek ◽  
Artur Stadnik

Abstract The article analyzes the effectiveness of individual Actibloc wastewater treatment plants (produced by Sotralentz) working in the technology of low-rate activated sludge in the Sequential Batch Reactor (SBR) system. The assessment of the effectiveness of household wastewater treatment plants was made on the basis of pollutants: BOD5, COD, total suspended solids, total nitrogen and total phosphorus. The research objects were four household sewage treatment plants located in: Lubań, Kłębanowice, Stara Rzeka and Kościan. The efficiency of removing pollutants in the examined facilities was in the range of: BOD5 92.2 ÷ 97.2%, COD 82.6 ÷ 89.9%, total suspended solids 90.2 ÷ 96.2%, total nitrogen 50.8 ÷ 83.1%, total phosphorus 46.5 ÷ 73.6%. The treated wastewater met the requirements set out in the Regulation of the Minister of the Environment on the conditions to be met when discharging sewage into water or soil, and on substances particularly harmful to the aquatic environment (Journal of Laws 2014, item 1800) in terms of indicators such as BOD5, COD, total suspended solids and total nitrogen. The effectiveness of phosphorus removal in the studied treatment plants was much lower.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Purnima Dhall ◽  
Rita Kumar ◽  
Anil Kumar

The performance of isolated designed consortia comprisingBacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosafor the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand), BOD (biochemical oxygen demand) MLSS (mixed liquor suspended solids), and TSS (total suspended solids) was studied. Different parameters were optimized (inoculum size, agitation, and temperature) to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass) at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants.


Author(s):  
E. I. Vyalkova ◽  
E. S. Glushchenko ◽  
A. V. Shalabodov ◽  
A. V. Shalabodov ◽  
E. Yu. Osipova

Problems of treatment and disposal of industrial wastewater from dairy enterprises exist in Russia and abroad. Industrial wastewater from dairy cannot be discharged even into the do-mestic sewage system. The local sewage treatment units of such enterprises require in detail studying the wastewater quality and supply modes. This article presents such parameters of the wastewater composition as environmental aggressiveness, organic matter, suspended solids, fats, nitrogen, phosphate, and others. It is shown that changes in the qualitative composition of effluents depend on the dairy production processes. A serious problem when choosing a treatment technology is the significant content of organic substances, fats, ammonium, ni-trates and phosphates in the resulting effluent. In addition, effluents are characterized by large fluctuations in quality when dumped in a sewage treatment unit or reagent solutions generated by the equipment flushing. A production process flowchart is proposed for the dairy water dis-posal with the appropriate water treatment for discharge into sewage treatment units.  


2021 ◽  
Vol 23 (05) ◽  
pp. 306-316
Author(s):  
Ankit Ankit ◽  
◽  
S.K. Singh ◽  

Sewage whether treated or untreated, ultimately discharge in lakes, rivers, streams, and oceans. We consider groundwater as pure, but unfortunately, sewage is one of the major reasons behind wastewater-associated diseases. Nearly 78% of the water flows back to the environment without any treatment. This can lead to numerous health and environmental problems so it is better to treat wastewater before disposal and further proper management can help in meeting the public’s water demand. As per today’s scenario, a number of innovations are required to operate treatment plants at high efficiency because of increasing domestic, commercial, and industrial waste. And this rise is taking place due to several reasons – urbanization, increasing population, economic development, and improved living conditions, etc. Nowadays people of both urban and peri-urban areas are using wastewater to irrigate their crops, often because they do not have any alternate source of irrigation water. New technologies are continuously being introduced in the sewage treatment plants to exhibit good performance. The paper focuses on reviewing the various sewage treatment methods and their results.


2014 ◽  
Vol 507 ◽  
pp. 782-785
Author(s):  
Qiu Yang Liao ◽  
Shao Hong You ◽  
Meng Hua Chen ◽  
Ming Yun Yang

With the constant development of new socialist countryside in our country and the new requirement of eco-environments construction proposed in the 18th National Party Congress. Sewage treatment equipments in rural area are in great demand year by year. New technologies in rural areas aim at dealing with sewage increase continuously. This thesis introduces the water quality of water system and lakes in our country, analyzing the influence of rural pollution, pointing out the current problems when we tackle with water pollution. The last part is the application of several small combined sewage treatment machines used in water pollution prevention and control in rural area.


2007 ◽  
Vol 56 (7) ◽  
pp. 33-40 ◽  
Author(s):  
Salmiati ◽  
M.R. Salim ◽  
R.Md. Hassan ◽  
K.Y. Tan

Biochemical products have been widely used for treatment of various types of wastewater. The treatment processes with the addition of biochemical products are quite attractive because of their simplicity, minimal use of equipment, they are environmentally friendly and are suitable for the removal of organic pollutants. The purpose of these products is to enhance the activities of beneficial microbes in order to improve treatment performance. This study was carried out to determine the potential of applying biochemical products in assisting and improving the performance of sewage treatment plants. In this study, four biochemical products, namely: Zeolite, Bio-C, Eco-B and Was-D, were applied to the sewage treatment plant. Analyses were carried out on several water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), oil & grease (O&G), phosphorus (P), ammoniacal nitrogen (AN) and sludge thickness (ST). From the results obtained, it can be seen that the overall performance of the treatment plant improved with most of the parameters studied were found to fulfill the DOE Standard B requirements. The performance of Bio-C was found to give better results than other products.


Sign in / Sign up

Export Citation Format

Share Document