scholarly journals A small-scale low-cost water treatment system for removal of selected heavy metals, bacteria and particles

2018 ◽  
Vol 13 (2) ◽  
pp. 446-459 ◽  
Author(s):  
Stephen Siwila ◽  
Isobel C. Brink

Abstract Two low-cost sand filtration systems incorporating granular activated carbon (GAC) and non-woven geotextile respectively were assessed for Point-of-Use water treatment. Laboratory scale models were evaluated in respect of selected heavy metals, bacterial and particulate removal when exposed to surface water for five months. System 1 (ISSF-1) incorporated GAC and system 2 (ISSF-2) incorporated non-woven geotextile. Filter-mats were placed on the filter surfaces of both systems. Flow rates ranged between 8 and 15 L/h for longer water contact with the GAC and bio-layer. On average, E.coli removals were 96% and 94%, while fecal coliform removals were 96% and 95%, by ISSF-1 and ISSF-2 respectively. Average TSS removals were 98% and 92%, while turbidity removals were 97% and 91%, by ISSF-1 and ISSF-2 respectively. Average metal removals were: Arsenic (21%), Cadmium (82%), Lead (36%), Iron (65%) and Manganese (94%) by ISSF-1, Arsenic (17%), Cadmium (<LoD), Lead (<LoD), Iron (92%) and Manganese (98%) by ISSF-2. Both models consistently met turbidity guideline (5 NTU) and can remove significant amounts of particles. Both systems can treat the poor-quality water used to provide relatively safe water and could be improved further for heavy metal removal. However, to guarantee continued safe-water supply, supplementary treatment by chlorination is recommended.

2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


2020 ◽  
Vol 1010 ◽  
pp. 489-494
Author(s):  
Abdul Hafidz Yusoff ◽  
Rosmawani Mohammad ◽  
Mardawani Mohamad ◽  
Ahmad Ziad Sulaiman ◽  
Nurul Akmar Che Zaudin ◽  
...  

Conventional methods to remove heavy metals from polluted water are expensive and not environmentally friendly. Therefore, this study was carried out to investigate the potential of agricultural waste such as pineapple peel (Ananas Cosmos) as low-cost absorbent to remove heavy metals from synthetic polluted water. The results showed that Cd, Cr and Pb were effectively removed by the biosorbent at 12g of pineapple peels in 100 mL solution. The optimum contact time for maximum adsorption was found to be 90 minutes, while the optimum pH for the heavy metal’s adsorption was 9. It was demonstrated that with the increase of adsorbent dosage, the percent of heavy metals removal was also increased due to the increasing adsorption capacity of the adsorbent. In addition, Langmuir model show maximum adsorption capacity of Cd is 1.91 mg/g. As conclusions, our findings show that pineapple peel has potential to remove heavy metal from polluted water.


2020 ◽  
Vol 17 (9) ◽  
pp. 4666-4670
Author(s):  
Himanshu Sekhar Rath ◽  
Mira Das ◽  
Smita Rath ◽  
U. N. Dash ◽  
Alakananda Tripathy

The goal of this research is to determine the current standard of water quality along the Brahmani River stretch in terms of physico-chemical parameters. The River Brahmani receives a substantial amount of industrial waste in the identified study area and is witness to a large amount of human and agricultural activities. Nowadays Ninety percent of Brahmani’s required water is secured with groundwater resources and it is essential to forecast pollutant content in those resources. Hence, this research aimed at using of nanoparticles such as Activated Carbons (ACs) for removal of heavy metal such as nickel and zinc in Brahmani river using the Langmuir approach. Adsorption seems to be the most widely used method for heavy metal recovery due to its low cost, easy installation and the presence of alternative adsorbents. In addition, the process of adsorption can also be made in use to recover heavy metal ions from wastewater. Despite these advantages, adsorption is hard to commercialize. Due to the strong absorption capacity, high number of pores and wide, common area, nanoparticles are treated as the effective method in removal of heavy metals in rivers. Comparative analysis shows that seventy-one percent of heavy metals can be removed using the nanotechnology model.


2013 ◽  
Vol 389 ◽  
pp. 29-35 ◽  
Author(s):  
Norzila Othman ◽  
S. Mohd-Asharuddin ◽  
M.F.H. Azizul-Rahman

Biosorption is an environmental friendly method for metal removal as it can be used as a cost effective and efficient technique for heavy metal removal. A lot of biomass can be choosed as biosorbent such as waste material from food processing and agriculture.ent. This paper will review the potential used of local fruit rind as biosorbent for heavy metal removal in wastewater. Heavy metals have been in various industries and resulted to a toxic condition in aquatic ecosystem. Therefore, various techniques have been employed for the treatment of metal-bearing industrial wastewaters including biological treatment through biosorption. Biosorption offers the advantages of low cost, good efficiency and production of sludge with high metal content is possible to avoid by the existence of metal recovery method from metal loaded biosorbent. The successful application of local fruit waste in treating wastewater containing heavy metals requires a deeper understanding of how biosorbent material proceeds.


2021 ◽  
Author(s):  
Athar Hussain ◽  
Sangeeta Madan ◽  
Richa Madan

Adsorption processes are extensively used in wastewater treatment for heavy metal removal. The most widely used adsorbent is activated carbon giving the best of results but it’s high cost limits its use. It has a high cost of production and regeneration. As the world today faces a shortage of freshwater resources, it is inevitable to look for alternatives that lessen the burden on existing resources. Also, heavy metals are toxic even in trace concentrations, so an environmentally safe method of their removal necessitated the requirement of low cost adsorbents. Adsorption is a cost-effective technique and gained recognition due to its minimum waste disposal advantage. This chapter focuses on the process of adsorption and the types of adsorbent available today. It also encompasses the low-cost adsorbents ranging from agricultural waste to industrial waste explaining the adsorption reaction condition. The cost-effectiveness, technical applicability and easy availability of raw material with low negative impact on the system are the precursors in selecting the adsorbents. The novelty of the chapter lies in covering a wide range of adsorbents with their efficiency in removal of heavy metals from wastewater.


Author(s):  
K. J. Naveen Kumar ◽  
J. Prakash

Developing countries are increasingly concerned with pollution due to toxic heavy metals in the environment. Unlike most organic pollutants which can be destroyed, toxic metal ions released into the environment often persist indefinitely circulating and eventually accumulating throughout the food chain thus posing a serious threat to mankind. The use of biological materials for heavy metal removal or recovery has gained importance in recent years due to their good performance and low cost. Among the various sources, both live and inactivated biomass of organisms exhibits interesting metal binding capacities. Their complex cell walls contain high content of functional groups like amino, amide, hydroxyl, carboxyl, and phosphate which have been implicated in metals binding. In the present study, Aspergillus niger was used to analyze the metal uptake from an aqueous solution. The determination of Cu+2, Pb+2, Cd+2, Zn+2, Co-2 and Ni+2 in samples was carried out by differential Pulse Anodic Voltammetry (DPASV) and the Voltammograms. Production of oxalic acid was carried out by submerged fermentation. The organism used in the present study has the ideal properties to sequester toxic metals and grow faster.


2018 ◽  
Vol 13 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Stephen Siwila ◽  
Isobel C Brink

Abstract The study examined two low-cost point-of-use water treatment systems developed in respect of bacterial and particulate removal when exposed to surface water for three months. Bacterial removal efficiency was estimated using E. coli and fecal coliforms, while particulate reduction efficiency was estimated by determining turbidity and total suspended solids (TSS). The systems investigated were the Gift of Water System (GWS) made in USA and the Drip Filter System (DFS) Model-JW-PD-1-70 made in South Africa. The study included seasonal water quality changes. Both systems recorded 100% bacterial removal throughout the study. Although results show that DFS was slightly better in terms of particulate reduction, both systems removed large proportions of particles from the water. On average TSS removals were 89% and 95%, while turbidity removals were 87% and 94%, by GWS and DFS respectively. The treated water from the two systems compared well with good quality tap water supplied to Stellenbosch University. The results show that both systems can treat the poor quality water used to meet the SANS 241 and WHO guidelines with respect to bacterial and suspended solids content.


Author(s):  
Harendra Kumar Sharma ◽  
Irfan Rashid Sofi ◽  
Khursheed Ahmad Wani

Heavy metal contamination in water is a serious concern to the environment and human health. High concentrations of heavy metals in the environment can be toxic to a variety of living species. Natural bio-absorbents are abundant and inexpensive and considered a waste if not managed properly. The role of bio-absorbents has been widely studied and has been utilized for the removal of heavy metals. The objective of the chapter is to search the database for different absorbents and their efficiency for the removal of heavy metals. Key words related to the study have been used to select different papers published by the researchers all over the world. A rigorous three-tier process has been utilized by the authors to select the papers from the database for the current study. This chapter has identified a few research gaps in the field of heavy metal removal by using different low cast absorbents that need to be taken into account in future research.


2007 ◽  
Vol 29-30 ◽  
pp. 367-370
Author(s):  
W. Han ◽  
Ming Xia Lu ◽  
H. Wang ◽  
G. Liu

Water contaminated by heavy metals remains a serious environmental and public health problem. The toxic effects of heavy metals on the biosphere have been demonstrated by a number of studies. Since the main sources of heavy metals for humans are water and food, the monitoring of the heavy metals content in natural water is of paramount importance. Diverse technologies have been used to reduce the contents of heavy metals in water. Recently, adsorption methods have been widely used because of their low cost. The novel nano-water-purifying material used in our work is composed of AlO(OH) nanoparticles loaded onto glass fibre and supported by active carbon felt. The Al nano-powder starting material, was prepared using an electric explosive technique. The products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, and BET techniques. It was found that the particles consisted of AlO(OH) nanofibres of pure boehmite structure. They exhibited a surface area of 431.7 m2 / g. The composite material was found to be effective in removing cadmium from dilute aqueous solutions and could find broad application in heavy metal removal.


2019 ◽  
Vol 9 (21) ◽  
pp. 4531 ◽  
Author(s):  
Roberto Torres-Caban ◽  
Carmen A. Vega-Olivencia ◽  
Nairmen Mina-Camilde

The use of heavy metals in technological applications has led to detrimental effects on human health and the environment. Activated carbon and ion-exchange resins are commonly used to remove pollutants but they are expensive. Therefore, the research of low-cost alternatives derived from natural resources and organic wastes is being considered. The aim of this study considers the use of Calcium Alginate/Spent Coffee Grounds (CA–SCGs) composite beads to adsorb heavy metals from aqueous solutions, particularly, the removal of Ni2+ or Cd2+ at concentrations from 10 ppm to 100 ppm. CA–SCGs beads were made of equal proportions of alginate and spent coffee grounds and compared with calcium alginate beads (CA beads) and spent coffee grounds (SCGs) in terms of capacity and rate of adsorption. Three cycles of adsorption/desorption were done. The beads were characterized by Scanning Electron Microscopy coupled with an energy-dispersive X-ray spectroscopy (SEM–EDX), Fourier-transform infrared spectroscopy (FT–IR), Raman spectroscopy, and point of zero charge. Langmuir, Freundlich, and Sips models, and a pseudo-second-order kinetic equation were used. Sips model showed the best correlation with the adsorption of CA–SCGs beads with capacities of adsorption of 91.18 mg/g for cadmium and 20.96 mg/g for nickel. CA–SCGs beads had a greater adsorption than the CA beads, achieving adsorption percentages close to 100% than alginate alone, showing their effectiveness in heavy metal removal.


Sign in / Sign up

Export Citation Format

Share Document