Applying CFD modelling in order to enhance water treatment reactors efficiency: example of the ozonation process

2001 ◽  
Vol 1 (4) ◽  
pp. 125-130 ◽  
Author(s):  
Z. Do-Quang ◽  
A. Cockx ◽  
J.M. Laîne ◽  
M. Roustan

Disinfection/oxidation processes are a major step in the water treatment train. As high levels of inactivation or removal of pathogens and micropolluants are aimed at the design and optimized operating conditions are crucial issues for the reliability of the treatment and cost control. In this context, using computational fluid dynamics allows better evaluation of the efficiency of the treatment and guarantees its performance prior to full-scale design. Examples are given in this paper of the capability of the numerical tool in order to propose an optimized solution for a refurbishment or a new plant design. The full-scale realization confirmed the predicted quality benefit.

Author(s):  
Vincent Le Toux ◽  
Stéphanie Harchambois ◽  
Geoffrey Guindeuil ◽  
Romain Vivet ◽  
François-Xavier Pasquet ◽  
...  

Abstract The Electrically Trace Heated Blanket (ETH-Blanket) is a new offshore intervention/remediation system currently in development by TechnipFMC for the efficient remediation of plugs due to hydrates or wax in subsea production and injection flowlines. The ETH-Blanket consists of a network of heating cables placed underneath an insulation layer which is laid onto the seabed above the plugged flowline. By applying electrical power to the cables, heat is generated by Joule effect which warms up the flowline content until hydrate dissociation or wax plug remediation through softening or complete melting. As part of a Joint Industry Project (JIP) between TechnipFMC, Shell and Total, full-scale thermal testing of an ETH-Blanket prototype was carried out in Artelia facilities (Grenoble, France). This testing was performed to verify the capability of the ETH-Blanket system to increase the temperature of the fluid inside a pipe sample above a target temperature (hydrate dissociation temperature or wax disappearance temperature) for various conditions. The impact of lateral misalignment of the ETH-blanket on the pipe and of the pipe burial depth were studied. Moreover, the tests were carried out on two pipe samples, with different designs and insulation properties. CFD models of the test set-up have been built to replicate the thermal behaviour of the ETH-Blanket prototype. Once validated against the test results, the final aim of CFD modelling is to be able to calculate the performances of the system in real subsea conditions. The modelling of the prototype includes a 3D geometry of the system including the soil, natural convection of water between the ETH-blanket and the pipe sample and natural convection of fluid in the pipe sample. The present paper focuses on the CFD work performed to match the full-scale thermal test results and to predict the ETH-Blanket performances for real subsea operating conditions. It will describe the various CFD models used, the sensitivities and findings in terms of local and global heat transfer and flow effects and the comparison to the experimental data.


2012 ◽  
Vol 39 ◽  
pp. 228-234
Author(s):  
Athanasia G. Tekerlekopoulou ◽  
Panagiotis G. Papazafiris ◽  
Dimitris V. Vayenas

1997 ◽  
Vol 36 (4) ◽  
pp. 77-84 ◽  
Author(s):  
Richard Head ◽  
Jem Hart ◽  
Nigel Graham

Previous attempts at simulating the floc blanket clarification process have failed to predict adequately the performance of ‘real’ tanks on water treatment works over a range of treatment conditions. In this paper, a mathematical model of the floc blanket clarification process is presented. This model has been used to simulate the performance of a flat-bottomed clarifier operating on a full-scale water treatment works. The model predictions have been compared with data obtained from the treatment works, and the model has been shown to perform well. The model has then been used to simulate the effects of changes in the operating conditions of the clarifier on the concentration of the blanket in the clarifier and the quality of the treated water. The importance and potential uses of a model of the process at a treatment works are discussed.


2012 ◽  
Vol 39 (1-3) ◽  
pp. 228-234 ◽  
Author(s):  
Athanasia G. Tekerlekopoulou ◽  
Panagiotis G. Papazafiris ◽  
Dimitris V. Vayenas

1989 ◽  
Vol 21 (10-11) ◽  
pp. 1389-1402 ◽  
Author(s):  
R. Zaloum

Deviations from design expectations appear to stem from views which assume that a unique response should result from a given set of operating conditions. The results of this study showed that two systems operating at equal organic loads or F/M ratios and at the same SRT do not necessarily give equal responses. This deviation was linked to the manner in which the HRT and influent COD are manipulated to obtain a constant or uniform load, and to subtle interactions between influent COD, HRT and SRT on the biomass and effluent responses. Increases of up to 200% in influent COD from one steady level to the next did not significantly influence the effluent VSS concentration while an effect on filtered COD was observed for increases as low as 20%. Effluent TKN and filtered COD correlated strongly with the operating MLVSS while phosphorus residual depended on the operating SRT and the organic load removed. These results point to the inadequacy of traditional models to predict effluent quality and point to the need to consider these effects when developing simulation techniques or computer assisted expert systems for the control of waste treatment plants.


2000 ◽  
Vol 41 (7) ◽  
pp. 165-171 ◽  
Author(s):  
W. A. Hijnen ◽  
J. Willemsen-Zwaagstra ◽  
P. Hiemstra ◽  
G. J. Medema ◽  
D. van der Kooij

At eight full-scale water treatment plants in the Netherlands the removal of spores of sulphite-reducing clostridia (SSRC) was determined. By sampling and processing large volumes of water (1 up to 500 litres) SSRC were detected after each stage of the treatment. This enabled the assessment of the removal efficiency of the full-scale unit processes for persistent micro-organisms. A comparison with literature data on the removal of Cryptosporidium and Giardia by the same type of processes revealed that SSRC can be considered as a potential surrogate. The average Decimal Elimination Capacity (DEC) of the overall treatment plants ranged from 1.3–4.3 log. The observed actual log removal of SSRC by the unit processes and the overall treatment at one of the studied locations showed that the level of variation in removal efficiency was approximately 2 log. Moreover, from the actual log removal values it was observed that a low SSRC removal by one unit process is partly compensated by a higher removal by subsequent unit processes at this location. SSRC can be used for identification of the process conditions that cause variation in micro-organism removal which may lead to process optimization. Further research is necessary to determine the optimal use of SSRC in water quality monitoring for the production of microbiologically safe drinking water.


2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 521
Author(s):  
Fernando J. Beltrán ◽  
Ana Rey ◽  
Olga Gimeno

Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.


1998 ◽  
Vol 37 (9) ◽  
pp. 121-126 ◽  
Author(s):  
T. Hedberg ◽  
T. A. Wahlberg

The paper describes how waterworks can be upgraded by the use of microbiologically unit operations to make it possible to remove manganese from groundwater and surface water. Pilot plant studies and full-scale plant studies show that conventional oxidants as permanganate may be replaced by biooxidation thus reducing the use of chemicals in water treatment. Water containing high amounts of Fe and/or Mn and organic matter may be difficult to treat and pilot plant studies are therefore recommended. This study shows that one ground waterworks and one surface waterworks succed in removing manganese where previous treatment with permangante had failed.


Sign in / Sign up

Export Citation Format

Share Document