Effects of particle size distribution on the cake formation in crossflow microfiltration

2002 ◽  
Vol 2 (2) ◽  
pp. 305-311 ◽  
Author(s):  
S. Kim ◽  
S.-H. Cho ◽  
H. Park

In crossflow microfiltration, the tendency of particle deposition of polydisperse suspensions has been established experimentally and compared with that of monodisperse suspensions. The mass transfers of particles are different according to size in polydisperse suspensions. The most particles, which deposit to membrane surface without clogging pore in microfiltration, are much larger than 0.1 μm. Among these particles, smaller particles are easier to deposit than larger particles because of shear-induced diffusion and particle deposition depends on the size distribution of small particles. Effective particle diameter is introduced as a representative particle size which can reflect the diffusivity of each particle according to size and it describes the tendency of particle deposition very well in polydisperse suspensions. The effect of effective particle diameter is larger than that of feed concentration. The most important factor affecting particle deposition of polydisperse suspensions is effective particle diameter. The results of our research suggest that the effective particle diameter can be an important factor which can represent the potential for cake formation.

Author(s):  
S. Cazares ◽  
J. A. Barrios ◽  
C. Maya ◽  
G. Velásquez ◽  
M. Pérez ◽  
...  

Abstract An important physical property in environmental samples is particle size distribution. Several processes exist to measure particle diameter, including change in electrical resistance, blocking of light, the fractionation of field flow and laser diffraction (these being the most commonly used). However, their use requires expensive and complex equipment. Therefore, a Digital Microscopic Imaging Application (DMIA) method was developed adapting the algorithms used in the Helminth Egg Automatic Detector (HEAD) software coupled with a Neural Network (NN) and Bayesian algorithms. This allowed the determination of particle size distribution in samples of waste activated sludge (WAS), recirculated sludge (RCS), and pretreated sludge (PTS). The recirculation and electro-oxidation pre-treatment processes showed an effect in increasing the degree of solubilization (DS), decreasing particle size and breakage factor with ranges between 44.29%, and 31.89%. Together with a final NN calibration process, it was possible to compare results. For example, the 90th percentile of Equivalent Diameter (ED) value obtained by the DMIA with the corresponding result for the laser diffraction method. DMIA values: 228.76 μm (WAS), 111.18 μm (RCS), and 84.45 μm (PTS). DMIA processing has advantages in terms of reducing complexity, cost and time, and offers an alternative to the laser diffraction method.


2013 ◽  
Vol 6 (3) ◽  
pp. 4123-4152 ◽  
Author(s):  
Y. Cai ◽  
J. R. Snider ◽  
P. Wechsler

Abstract. This work describes calibration methods for the particle sizing and particle concentration systems of the passive cavity aerosol spectrometer probe (PCASP). Laboratory calibrations conducted over six years, in support of the deployment of a PCASP on a cloud physics research aircraft, are analyzed. Instead of using the many calibration sizes recommended by the PCASP manufacturer, a relationship between particle diameter and scattered light intensity is established using three sizes of mobility-selected polystyrene latex particles, one for each amplifier gain stage. In addition, studies of two factors influencing the PCASP's determination of the particle size distribution – amplifier baseline and particle shape – are conducted. It is shown that the PCASP-derived size distribution is sensitive to adjustments of the sizing system's baseline voltage, and that for aggregate spheres, a PCASP-derived particle size and a sphere-equivalent particle size agree within uncertainty dictated by the PCASP's sizing resolution. Robust determination of aerosol concentration, and size distribution, also require calibration of the PCASP's aerosol flowrate sensor. Sensor calibrations, calibration drift, and the sensor's non-linear response are documented.


1996 ◽  
Vol 16 (12) ◽  
pp. 1448-1453 ◽  
Author(s):  
Amareshwar T.K. Singh ◽  
David L. Rainwater ◽  
Candace M. Kammerer ◽  
R. Mark Sharp ◽  
Mahmood Poushesh ◽  
...  

Genetic and dietary effects on LDL phenotypes, including predominant LDL particle diameter, LDL size distribution, and non–HDL cholesterol and apoB concentrations, were investigated in 150 pedigreed baboons that are members of 19 sire groups. Baboons were fed a sequence of three defined diets differing in levels of fat and cholesterol. Increasing dietary fat had relatively little effect on two measures of LDL particle size. However, increasing the level of cholesterol in the diet resulted in larger increases of the predominant LDL particle diameters and in the proportion of stain on LDLs >28 nm. As expected, apoB and non–HDL cholesterol concentrations significantly increased when levels of dietary fat and cholesterol were increased. Correlations among the LDL phenotypes suggested that several different aspects of the LDL phenotype were captured by the four LDL measures across the three diets. Genetic effects indicated by sire group membership were significant both for expression of the LDL phenotypes and for response to changes in diet.


2013 ◽  
Vol 750-752 ◽  
pp. 1113-1116 ◽  
Author(s):  
Xue Bing Hu ◽  
Yun Yu ◽  
Jian Er Zhou ◽  
Li Xin Song

During graphene oxide separation process, the effects of the process parameters such as centrifugal separation time and ultrasonic treatment time on the particle size distribution of graphene oxide aqueous dispersion were studied. The results show graphene oxide has the narrower particle size distribution and the smaller nominal effective particle size with increasing the centrifugal separation time from 20 min to 160 min. And there is a critical time in the ultrasonic treatment to obtain the narrower particle size distribution and smaller nominal effective particle size of graphene oxide. Graphene oxide has the narrower particle size distribution and the smaller nominal effective particle size when the ultrasonic treatment time is 4 h.


Author(s):  
Kai Zhang ◽  
Jianzhong Lin ◽  
Mingzhou Yu

The flow and electric field are simulated numerically with finite volume method first, then large number of nanoparticles and microparticles are injected into the microchannel separately, and these particles are traced with the Lagrangian method. It has been found that particle deposition efficiency in the bend usually decreases first then increases with particle size increasing, and there usually exists a minimum value and it corresponds to the particle diameter of about 3μm, which means that kind of particle can transport longer distance. The electric field doesn’t affect that specified value. This conclusion is helpful to the optimization of the design of microchips.


2006 ◽  
Vol 72 (8) ◽  
pp. 5190-5196 ◽  
Author(s):  
Ekaterina Paramonova ◽  
Erica L. Zerfoss ◽  
Bruce E. Logan

ABSTRACT Point-of-use filters containing granular activated carbon (GAC) are an effective method for removing certain chemicals from water, but their ability to remove bacteria and viruses has been relatively untested. Collision efficiencies (α) were determined using clean-bed filtration theory for two bacteria (Raoutella terrigena 33257 and Escherichia coli 25922), a bacteriophage (MS2), and latex microspheres for four GAC samples. These GAC samples had particle size distributions that were bimodal, but only a single particle diameter can be used in the filtration equation. Therefore, consistent with previous reports, we used a particle diameter based on the smallest diameter of the particles (derived from the projected areas of 10% of the smallest particles). The bacterial collision efficiencies calculated using the filtration model were high (0.8 ≤ α ≤ 4.9), indicating that GAC was an effective capture material. Collision efficiencies greater than unity reflect an underestimation of the collision frequency, likely as a result of particle roughness and wide GAC size distributions. The collision efficiencies for microspheres (0.7 ≤ α ≤ 3.5) were similar to those obtained for bacteria, suggesting that the microspheres were a reasonable surrogate for the bacteria. The bacteriophage collision efficiencies ranged from ≥0.2 to ≤0.4. The predicted levels of removal for 1-cm-thick carbon beds ranged from 0.8 to 3 log for the bacteria and from 0.3 to 1.0 log for the phage. These tests demonstrated that GAC can be an effective material for removal of bacteria and phage and that GAC particle size is a more important factor than relative stickiness for effective particle removal.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Pei Fu ◽  
Yuansheng Song ◽  
Jian Yang ◽  
Qiuwang Wang

Abstract Gradient particle size anode has shown great potential in improving the electrical performance of anode-supported solid oxide fuel cells (SOFCs). In this study, a 3D comprehensive model is established to study the effect of various gradient particle size distribution on the cell electrical performance for the anode microstructure optimization. The effect of homogeneous particle size on the cell performance is studied first. The maximum current density of homogeneous anode SOFC is obtained for the comparison with the electrical performance of gradient anode SOFC. Then the effect of various gradient particle size distribution on the cell molar fraction, polarization losses, and electronic current density distribution is analyzed and discussed in detail. Results show that increasing the particle diameter gradient can effectively reduce the anodic concentration overpotential. Decreasing the particle diameter of anode functional layer 2 is beneficial for reducing the activation and ohmic overpotentials. On these bases, the comprehensive electrical performance of SOFCs with gradient particle size anode and homogeneous anode is compared to highlight the optimal gradient particle diameter distribution. In the studied cases of this work, the gradient particle diameter of 0.7 μm, 0.4 μm, and 0.1 μm at anode support layer (ASL), anode functional layer 1, and anode functional layer 2 (case 3) is the optimal particle size distribution.


2010 ◽  
Vol 21 (6) ◽  
pp. 676-680 ◽  
Author(s):  
Masatoshi Akashi ◽  
Tsukasa Otani ◽  
Atsuko Shimosaka ◽  
Yoshiyuki Shirakawa ◽  
Jusuke Hidaka

Sign in / Sign up

Export Citation Format

Share Document